Krzysztof A Konieczny, Indrajit Paul, Jose A Rodriguez, Miguel A Garcia-Garibay
{"title":"从电子束损伤到电子显微镜下的大规模反应放大:杜瓦苯晶体中电离诱导的链式反应。","authors":"Krzysztof A Konieczny, Indrajit Paul, Jose A Rodriguez, Miguel A Garcia-Garibay","doi":"10.1021/acscentsci.4c01429","DOIUrl":null,"url":null,"abstract":"<p><p>Electron microscopy in its various forms is one of the most powerful imaging and structural elucidation methods in nanotechnology where sample information is generally limited by random chemical and structural damage. Here we show how a well-selected chemical probe can be used to transform indiscriminate chemical damage into clean chemical processes that can be used to characterize some aspects of the interactions between high-energy electron beams and soft organic matter. Crystals of a Dewar benzene exposed to a 300 keV electron beam facilitate a clean valence-bond isomerization radical-cation chain reaction where the number of chemical events per incident electron is amplified by a factor of up to ca. 90,000.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2346-2352"},"PeriodicalIF":12.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672530/pdf/","citationCount":"0","resultStr":"{\"title\":\"From Beam Damage to Massive Reaction Amplification under the Electron Microscope: An Ionization-Induced Chain Reaction in Crystals of a Dewar Benzene.\",\"authors\":\"Krzysztof A Konieczny, Indrajit Paul, Jose A Rodriguez, Miguel A Garcia-Garibay\",\"doi\":\"10.1021/acscentsci.4c01429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electron microscopy in its various forms is one of the most powerful imaging and structural elucidation methods in nanotechnology where sample information is generally limited by random chemical and structural damage. Here we show how a well-selected chemical probe can be used to transform indiscriminate chemical damage into clean chemical processes that can be used to characterize some aspects of the interactions between high-energy electron beams and soft organic matter. Crystals of a Dewar benzene exposed to a 300 keV electron beam facilitate a clean valence-bond isomerization radical-cation chain reaction where the number of chemical events per incident electron is amplified by a factor of up to ca. 90,000.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"10 12\",\"pages\":\"2346-2352\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672530/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscentsci.4c01429\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/25 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.4c01429","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/25 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
From Beam Damage to Massive Reaction Amplification under the Electron Microscope: An Ionization-Induced Chain Reaction in Crystals of a Dewar Benzene.
Electron microscopy in its various forms is one of the most powerful imaging and structural elucidation methods in nanotechnology where sample information is generally limited by random chemical and structural damage. Here we show how a well-selected chemical probe can be used to transform indiscriminate chemical damage into clean chemical processes that can be used to characterize some aspects of the interactions between high-energy electron beams and soft organic matter. Crystals of a Dewar benzene exposed to a 300 keV electron beam facilitate a clean valence-bond isomerization radical-cation chain reaction where the number of chemical events per incident electron is amplified by a factor of up to ca. 90,000.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.