Liyan Zhang, Gangyin Zhao, Trevor Dalrymple, Yurii Husiev, Hildert Bronkhorst, Gabriel Forn-Cuní, Bruno Lopes-Bastos, Ewa Snaar-Jagalska, Sylvestre Bonnet
{"title":"环钌肽原药可穿透血脑屏障,并在直位斑马鱼肿瘤模型中通过光激活攻击胶质母细胞瘤。","authors":"Liyan Zhang, Gangyin Zhao, Trevor Dalrymple, Yurii Husiev, Hildert Bronkhorst, Gabriel Forn-Cuní, Bruno Lopes-Bastos, Ewa Snaar-Jagalska, Sylvestre Bonnet","doi":"10.1021/acscentsci.4c01173","DOIUrl":null,"url":null,"abstract":"<p><p>The blood-brain barrier (BBB) presents one of the main obstacles to delivering anticancer drugs in glioblastoma. Herein, we investigated the potential of a series of cyclic ruthenium-peptide conjugates as photoactivated therapy candidates for the treatment of this aggressive tumor. The three compounds studied, <b>Ru-p(HH)</b>, <b>Ru-p(MH)</b>, and <b>Ru-p(MM)</b> ([Ru(Ph<sub>2</sub>phen)<sub>2</sub> <b>(</b>Ac-X<sub>1</sub>RGDX<sub>2</sub>-NH<sub>2</sub>)]Cl<sub>2</sub> with Ph<sub>2</sub>phen = 4,7-diphenyl-1,10-phenanthroline and X<sub>1</sub>, X<sub>2</sub> = His or Met), include an integrin-targeted pentapeptide coordinated to a ruthenium warhead via two photoactivated ruthenium-X<sub>1,2</sub> bonds. Their photochemistry, activation mechanism, tumor targeting, and antitumor activity were meticulously addressed. A combined <i>in vitro</i> and <i>in vivo</i> study revealed that the photoactivated cell-killing mechanism and their O<sub>2</sub> dependence were strongly influenced by the nature of X<sub>1</sub> and X<sub>2</sub>. <b>Ru-p(MM)</b> was shown to be a photoactivated chemotherapy (PACT) drug, while <b>Ru-p(HH)</b> behaved as a photodynamic therapy (PDT) drug. All conjugates, however, showed comparable antitumor targeting and efficacy toward human glioblastoma 3D spheroids and orthotopic glioblastoma tumor models in zebrafish embryos. Most importantly, in this model, all three compounds could effectively cross the BBB, resulting in excellent targeting of the tumors in the brain.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2294-2311"},"PeriodicalIF":12.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672551/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cyclic Ruthenium-Peptide Prodrugs Penetrate the Blood-Brain Barrier and Attack Glioblastoma upon Light Activation in Orthotopic Zebrafish Tumor Models.\",\"authors\":\"Liyan Zhang, Gangyin Zhao, Trevor Dalrymple, Yurii Husiev, Hildert Bronkhorst, Gabriel Forn-Cuní, Bruno Lopes-Bastos, Ewa Snaar-Jagalska, Sylvestre Bonnet\",\"doi\":\"10.1021/acscentsci.4c01173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The blood-brain barrier (BBB) presents one of the main obstacles to delivering anticancer drugs in glioblastoma. Herein, we investigated the potential of a series of cyclic ruthenium-peptide conjugates as photoactivated therapy candidates for the treatment of this aggressive tumor. The three compounds studied, <b>Ru-p(HH)</b>, <b>Ru-p(MH)</b>, and <b>Ru-p(MM)</b> ([Ru(Ph<sub>2</sub>phen)<sub>2</sub> <b>(</b>Ac-X<sub>1</sub>RGDX<sub>2</sub>-NH<sub>2</sub>)]Cl<sub>2</sub> with Ph<sub>2</sub>phen = 4,7-diphenyl-1,10-phenanthroline and X<sub>1</sub>, X<sub>2</sub> = His or Met), include an integrin-targeted pentapeptide coordinated to a ruthenium warhead via two photoactivated ruthenium-X<sub>1,2</sub> bonds. Their photochemistry, activation mechanism, tumor targeting, and antitumor activity were meticulously addressed. A combined <i>in vitro</i> and <i>in vivo</i> study revealed that the photoactivated cell-killing mechanism and their O<sub>2</sub> dependence were strongly influenced by the nature of X<sub>1</sub> and X<sub>2</sub>. <b>Ru-p(MM)</b> was shown to be a photoactivated chemotherapy (PACT) drug, while <b>Ru-p(HH)</b> behaved as a photodynamic therapy (PDT) drug. All conjugates, however, showed comparable antitumor targeting and efficacy toward human glioblastoma 3D spheroids and orthotopic glioblastoma tumor models in zebrafish embryos. Most importantly, in this model, all three compounds could effectively cross the BBB, resulting in excellent targeting of the tumors in the brain.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"10 12\",\"pages\":\"2294-2311\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672551/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscentsci.4c01173\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/25 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.4c01173","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/25 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cyclic Ruthenium-Peptide Prodrugs Penetrate the Blood-Brain Barrier and Attack Glioblastoma upon Light Activation in Orthotopic Zebrafish Tumor Models.
The blood-brain barrier (BBB) presents one of the main obstacles to delivering anticancer drugs in glioblastoma. Herein, we investigated the potential of a series of cyclic ruthenium-peptide conjugates as photoactivated therapy candidates for the treatment of this aggressive tumor. The three compounds studied, Ru-p(HH), Ru-p(MH), and Ru-p(MM) ([Ru(Ph2phen)2(Ac-X1RGDX2-NH2)]Cl2 with Ph2phen = 4,7-diphenyl-1,10-phenanthroline and X1, X2 = His or Met), include an integrin-targeted pentapeptide coordinated to a ruthenium warhead via two photoactivated ruthenium-X1,2 bonds. Their photochemistry, activation mechanism, tumor targeting, and antitumor activity were meticulously addressed. A combined in vitro and in vivo study revealed that the photoactivated cell-killing mechanism and their O2 dependence were strongly influenced by the nature of X1 and X2. Ru-p(MM) was shown to be a photoactivated chemotherapy (PACT) drug, while Ru-p(HH) behaved as a photodynamic therapy (PDT) drug. All conjugates, however, showed comparable antitumor targeting and efficacy toward human glioblastoma 3D spheroids and orthotopic glioblastoma tumor models in zebrafish embryos. Most importantly, in this model, all three compounds could effectively cross the BBB, resulting in excellent targeting of the tumors in the brain.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.