Boris Louis, Sudipta Seth, Qingzhi An, Ran Ji, Yana Vaynzof, Johan Hofkens, Ivan G. Scheblykin
{"title":"钙钛矿太阳能电池的局部分辨光物理","authors":"Boris Louis, Sudipta Seth, Qingzhi An, Ran Ji, Yana Vaynzof, Johan Hofkens, Ivan G. Scheblykin","doi":"10.1002/adma.202413126","DOIUrl":null,"url":null,"abstract":"<p>The instability of metal halide perovskites limits the commercialization of solar cells despite their impressive efficiencies. This instability, driven by photo-induced ion migration, leads to material restructuring, defect formation, degradation, and defect healing. However, these same “unwanted” properties enable to propose Correlation Clustering Imaging (CLIM), a technique that detects local photoluminescence (PL) fluctuations through wide-field fluorescence microscopy. It is shown that such fluctuations are present in high-quality perovskites and their corresponding solar cells. CLIM successfully visualizes the polycrystalline grain structure in perovskite films, closely matching electron microscopy images. The analysis of fluctuations reveals a dominant metastable defect responsible for the fluctuations. In solar cells in short-circuit conditions, these fluctuations are significantly larger, and corresponding correlated regions extend up to 10 micrometers, compared to 2 micrometers in films. It is proposed that the regions resolved by CLIM in solar cells possess a common pool of charge extraction channels, which fluctuate and cause PL to vary. Since PL fluctuations reflect non-radiative recombination processes, CLIM provides valuable insights into the structural and functional dynamics of carrier transport, ion migration, defect behavior, and recombination losses. CLIM offers a non-invasive approach to understanding luminescent materials and devices in operando, utilizing contrasts based on previously untapped properties.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 7","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202413126","citationCount":"0","resultStr":"{\"title\":\"In Operando Locally-Resolved Photophysics in Perovskite Solar Cells by Correlation Clustering Imaging\",\"authors\":\"Boris Louis, Sudipta Seth, Qingzhi An, Ran Ji, Yana Vaynzof, Johan Hofkens, Ivan G. Scheblykin\",\"doi\":\"10.1002/adma.202413126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The instability of metal halide perovskites limits the commercialization of solar cells despite their impressive efficiencies. This instability, driven by photo-induced ion migration, leads to material restructuring, defect formation, degradation, and defect healing. However, these same “unwanted” properties enable to propose Correlation Clustering Imaging (CLIM), a technique that detects local photoluminescence (PL) fluctuations through wide-field fluorescence microscopy. It is shown that such fluctuations are present in high-quality perovskites and their corresponding solar cells. CLIM successfully visualizes the polycrystalline grain structure in perovskite films, closely matching electron microscopy images. The analysis of fluctuations reveals a dominant metastable defect responsible for the fluctuations. In solar cells in short-circuit conditions, these fluctuations are significantly larger, and corresponding correlated regions extend up to 10 micrometers, compared to 2 micrometers in films. It is proposed that the regions resolved by CLIM in solar cells possess a common pool of charge extraction channels, which fluctuate and cause PL to vary. Since PL fluctuations reflect non-radiative recombination processes, CLIM provides valuable insights into the structural and functional dynamics of carrier transport, ion migration, defect behavior, and recombination losses. CLIM offers a non-invasive approach to understanding luminescent materials and devices in operando, utilizing contrasts based on previously untapped properties.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 7\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202413126\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202413126\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202413126","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In Operando Locally-Resolved Photophysics in Perovskite Solar Cells by Correlation Clustering Imaging
The instability of metal halide perovskites limits the commercialization of solar cells despite their impressive efficiencies. This instability, driven by photo-induced ion migration, leads to material restructuring, defect formation, degradation, and defect healing. However, these same “unwanted” properties enable to propose Correlation Clustering Imaging (CLIM), a technique that detects local photoluminescence (PL) fluctuations through wide-field fluorescence microscopy. It is shown that such fluctuations are present in high-quality perovskites and their corresponding solar cells. CLIM successfully visualizes the polycrystalline grain structure in perovskite films, closely matching electron microscopy images. The analysis of fluctuations reveals a dominant metastable defect responsible for the fluctuations. In solar cells in short-circuit conditions, these fluctuations are significantly larger, and corresponding correlated regions extend up to 10 micrometers, compared to 2 micrometers in films. It is proposed that the regions resolved by CLIM in solar cells possess a common pool of charge extraction channels, which fluctuate and cause PL to vary. Since PL fluctuations reflect non-radiative recombination processes, CLIM provides valuable insights into the structural and functional dynamics of carrier transport, ion migration, defect behavior, and recombination losses. CLIM offers a non-invasive approach to understanding luminescent materials and devices in operando, utilizing contrasts based on previously untapped properties.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.