自生碳氧离子使界面OH -约束增强生物质电氧化在宽电位窗口

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Keping Wang, Mei Wu, Yan Zhang, Binbin Jiang, Yaqiong Su, Song Yang, Xihong Lu, Hu Li
{"title":"自生碳氧离子使界面OH -约束增强生物质电氧化在宽电位窗口","authors":"Keping Wang,&nbsp;Mei Wu,&nbsp;Yan Zhang,&nbsp;Binbin Jiang,&nbsp;Yaqiong Su,&nbsp;Song Yang,&nbsp;Xihong Lu,&nbsp;Hu Li","doi":"10.1002/adfm.202424435","DOIUrl":null,"url":null,"abstract":"<p>The preferential adsorption toward OH<sup>−</sup> on the anode most likely blocks the accessibility of organic molecules and triggers competitive oxygen evolution reaction (OER), typically precipitating a narrow potential window. Here, an OH<sup>−</sup> deconfinement strategy enabled by CO<sub>3</sub><sup>2−</sup> self-transformed from C<sub>2</sub>O<sub>4</sub><sup>2−</sup> on metallic nickel oxalate (NiC<sub>2</sub>O<sub>4</sub>) for efficient synthesis of bioplastic monomer 2,5-furanedicarboxylic acid (FDCA) with faradaic efficiency of &gt;95% via electrocatalytic 5-hydroxymethylfurfural (HMF) oxidation reaction (e-HMFOR) at a wider potential window of 1.38–1.56 V<sub>RHE</sub>, outperforming state-of-the-art Ni-based electrocatalysts is presented. In situ, tests corroborate that the construction of NiOOH with surface-adsorbed CO<sub>3</sub><sup>2−</sup> (NiOOH-CO<sub>3</sub><sup>2−</sup>) from NiC<sub>2</sub>O<sub>4</sub> can be facilitated by self-liberating CO<sub>3</sub><sup>2−</sup>. The CO<sub>3</sub><sup>2−</sup> ions serving as an electric field engine can effectively weaken OH<sup>−</sup> coverage through electrostatic repulsion and enhance HMF adsorption at the NiOOH-CO<sub>3</sub><sup>2−</sup> surface, thereby heightening e-HMFOR while inhibiting OER. Computational results further indicate that the CO<sub>3</sub><sup>2−</sup> on NiOOH hoists the energy barrier of oxygen intermediate conversion (O* → OOH*) to suppress OER but promotes the e-HMFOR kinetics. The precise modulation of OH<sup>−</sup> adsorption behavior on the electrocatalyst offers a powerful kit for boosting the oxidative upgrading process while circumventing the competing reaction OER.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 19","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autogenetic Carbon Oxyanions Enable Interfacial OH− Deconfinement for Reinforced Biomass Electrooxidation over Wide Potential Window\",\"authors\":\"Keping Wang,&nbsp;Mei Wu,&nbsp;Yan Zhang,&nbsp;Binbin Jiang,&nbsp;Yaqiong Su,&nbsp;Song Yang,&nbsp;Xihong Lu,&nbsp;Hu Li\",\"doi\":\"10.1002/adfm.202424435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The preferential adsorption toward OH<sup>−</sup> on the anode most likely blocks the accessibility of organic molecules and triggers competitive oxygen evolution reaction (OER), typically precipitating a narrow potential window. Here, an OH<sup>−</sup> deconfinement strategy enabled by CO<sub>3</sub><sup>2−</sup> self-transformed from C<sub>2</sub>O<sub>4</sub><sup>2−</sup> on metallic nickel oxalate (NiC<sub>2</sub>O<sub>4</sub>) for efficient synthesis of bioplastic monomer 2,5-furanedicarboxylic acid (FDCA) with faradaic efficiency of &gt;95% via electrocatalytic 5-hydroxymethylfurfural (HMF) oxidation reaction (e-HMFOR) at a wider potential window of 1.38–1.56 V<sub>RHE</sub>, outperforming state-of-the-art Ni-based electrocatalysts is presented. In situ, tests corroborate that the construction of NiOOH with surface-adsorbed CO<sub>3</sub><sup>2−</sup> (NiOOH-CO<sub>3</sub><sup>2−</sup>) from NiC<sub>2</sub>O<sub>4</sub> can be facilitated by self-liberating CO<sub>3</sub><sup>2−</sup>. The CO<sub>3</sub><sup>2−</sup> ions serving as an electric field engine can effectively weaken OH<sup>−</sup> coverage through electrostatic repulsion and enhance HMF adsorption at the NiOOH-CO<sub>3</sub><sup>2−</sup> surface, thereby heightening e-HMFOR while inhibiting OER. Computational results further indicate that the CO<sub>3</sub><sup>2−</sup> on NiOOH hoists the energy barrier of oxygen intermediate conversion (O* → OOH*) to suppress OER but promotes the e-HMFOR kinetics. The precise modulation of OH<sup>−</sup> adsorption behavior on the electrocatalyst offers a powerful kit for boosting the oxidative upgrading process while circumventing the competing reaction OER.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 19\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202424435\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202424435","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

阳极上对OH -的优先吸附很可能阻碍了有机分子的可及性,并引发了竞争性析氧反应(OER),通常形成一个狭窄的电位窗口。本文提出了一种OH -约束策略,通过电催化5-羟甲基糠醛(HMF)氧化反应(e-HMFOR),在1.38-1.56 VRHE的更宽电位窗口内,由C2O42 -自转化为CO32 -在金属草酸镍(NiC2O4)上有效合成生物塑料单体2,5-呋喃二羧酸(FDCA),其faradaic效率为95%,优于最先进的ni基电催化剂。原位实验证实,自释放CO32−有助于NiC2O4表面吸附CO32−(nioh -CO32−)构建NiOOH。CO32−离子作为电场引擎,可以通过静电斥力有效削弱OH−的覆盖,增强nioh -CO32−表面对HMF的吸附,从而提高e-HMFOR,抑制OER。计算结果进一步表明,NiOOH上的CO32−提高了氧中间体转化的能垒(O*→OOH*)以抑制OER,但促进了e-HMFOR动力学。电催化剂上OH -吸附行为的精确调制为促进氧化升级过程提供了强大的工具,同时避免了竞争反应OER。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Autogenetic Carbon Oxyanions Enable Interfacial OH− Deconfinement for Reinforced Biomass Electrooxidation over Wide Potential Window

Autogenetic Carbon Oxyanions Enable Interfacial OH− Deconfinement for Reinforced Biomass Electrooxidation over Wide Potential Window

Autogenetic Carbon Oxyanions Enable Interfacial OH− Deconfinement for Reinforced Biomass Electrooxidation over Wide Potential Window

Autogenetic Carbon Oxyanions Enable Interfacial OH− Deconfinement for Reinforced Biomass Electrooxidation over Wide Potential Window

Autogenetic Carbon Oxyanions Enable Interfacial OH− Deconfinement for Reinforced Biomass Electrooxidation over Wide Potential Window

Autogenetic Carbon Oxyanions Enable Interfacial OH− Deconfinement for Reinforced Biomass Electrooxidation over Wide Potential Window

The preferential adsorption toward OH on the anode most likely blocks the accessibility of organic molecules and triggers competitive oxygen evolution reaction (OER), typically precipitating a narrow potential window. Here, an OH deconfinement strategy enabled by CO32− self-transformed from C2O42− on metallic nickel oxalate (NiC2O4) for efficient synthesis of bioplastic monomer 2,5-furanedicarboxylic acid (FDCA) with faradaic efficiency of >95% via electrocatalytic 5-hydroxymethylfurfural (HMF) oxidation reaction (e-HMFOR) at a wider potential window of 1.38–1.56 VRHE, outperforming state-of-the-art Ni-based electrocatalysts is presented. In situ, tests corroborate that the construction of NiOOH with surface-adsorbed CO32− (NiOOH-CO32−) from NiC2O4 can be facilitated by self-liberating CO32−. The CO32− ions serving as an electric field engine can effectively weaken OH coverage through electrostatic repulsion and enhance HMF adsorption at the NiOOH-CO32− surface, thereby heightening e-HMFOR while inhibiting OER. Computational results further indicate that the CO32− on NiOOH hoists the energy barrier of oxygen intermediate conversion (O* → OOH*) to suppress OER but promotes the e-HMFOR kinetics. The precise modulation of OH adsorption behavior on the electrocatalyst offers a powerful kit for boosting the oxidative upgrading process while circumventing the competing reaction OER.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信