稀释地表硒的电供给,实现农业氢监测

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaowu Wang, Zhigang Zeng, Zhiheng Ma, Musen Li, Yin Wang, Zhanchen Wang, Ruiling Gao, Xin Jia, Pengfei Hu, Bo Lu, Zhenggang Xue, Jiaqiang Xu
{"title":"稀释地表硒的电供给,实现农业氢监测","authors":"Xiaowu Wang,&nbsp;Zhigang Zeng,&nbsp;Zhiheng Ma,&nbsp;Musen Li,&nbsp;Yin Wang,&nbsp;Zhanchen Wang,&nbsp;Ruiling Gao,&nbsp;Xin Jia,&nbsp;Pengfei Hu,&nbsp;Bo Lu,&nbsp;Zhenggang Xue,&nbsp;Jiaqiang Xu","doi":"10.1002/adfm.202419570","DOIUrl":null,"url":null,"abstract":"<p>Electron state of catalyst surface is crucial to optimize the adsorption/intermediate state of gas molecules during the sensing reaction. Herein, we develop an electron-dilution strategy by introducing Pd/Pt species into semiconductor ZnSe to construct electron-deficient Se surface, exhibiting excellent H<sub>2</sub> sensing performances. It is found that different metal doping can induce remarkable electric environment changes of Se atoms. For example, compared with Pd, Pt display stronger electronic dilution ability to adjacent Se atoms. X-ray photoelectron spectroscopy (XPS) characterizations further prove that the doping of Pd/Pt will induce the generation of the electron-deficient Se sites, appearing a new and high binding energy state. Furthermore, the density functional theory (DFT) calculations show that the deficient Se sites on the Pt-ZnSe surface could reduce the level of anti-bonding orbital filling, thus enhancing the stability of the Se-Hads bond and strengthening the H<sub>2</sub> adsorption. As a result, the Pt-ZnSe based micro-electromechanical systems (MEMS) gas sensors exhibit high response value of 3.22 to 10 ppm H<sub>2</sub> at low operation temperature of 145 °C. Inserting the Pt-ZnSe MEMS sensors array into multifunctional wireless sensing device, it can realize real-time H<sub>2</sub>/temperature/humidity monitoring and cloud data transmission for hydrogen agriculture on production, preserving and storing crop.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 17","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diluting the Electric Supply of Surface Selenium Species to Realize Enhanced Hydrogen Monitoring in Agriculture\",\"authors\":\"Xiaowu Wang,&nbsp;Zhigang Zeng,&nbsp;Zhiheng Ma,&nbsp;Musen Li,&nbsp;Yin Wang,&nbsp;Zhanchen Wang,&nbsp;Ruiling Gao,&nbsp;Xin Jia,&nbsp;Pengfei Hu,&nbsp;Bo Lu,&nbsp;Zhenggang Xue,&nbsp;Jiaqiang Xu\",\"doi\":\"10.1002/adfm.202419570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electron state of catalyst surface is crucial to optimize the adsorption/intermediate state of gas molecules during the sensing reaction. Herein, we develop an electron-dilution strategy by introducing Pd/Pt species into semiconductor ZnSe to construct electron-deficient Se surface, exhibiting excellent H<sub>2</sub> sensing performances. It is found that different metal doping can induce remarkable electric environment changes of Se atoms. For example, compared with Pd, Pt display stronger electronic dilution ability to adjacent Se atoms. X-ray photoelectron spectroscopy (XPS) characterizations further prove that the doping of Pd/Pt will induce the generation of the electron-deficient Se sites, appearing a new and high binding energy state. Furthermore, the density functional theory (DFT) calculations show that the deficient Se sites on the Pt-ZnSe surface could reduce the level of anti-bonding orbital filling, thus enhancing the stability of the Se-Hads bond and strengthening the H<sub>2</sub> adsorption. As a result, the Pt-ZnSe based micro-electromechanical systems (MEMS) gas sensors exhibit high response value of 3.22 to 10 ppm H<sub>2</sub> at low operation temperature of 145 °C. Inserting the Pt-ZnSe MEMS sensors array into multifunctional wireless sensing device, it can realize real-time H<sub>2</sub>/temperature/humidity monitoring and cloud data transmission for hydrogen agriculture on production, preserving and storing crop.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 17\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202419570\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202419570","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在感应反应中,催化剂表面的电子态对优化气体分子的吸附/中间态至关重要。在此,我们开发了一种电子稀释策略,通过在半导体ZnSe中引入Pd/Pt物质来构建缺电子的Se表面,具有优异的H2传感性能。发现不同的金属掺杂能引起Se原子电环境的显著变化。例如,与Pd相比,Pt对相邻的Se原子表现出更强的电子稀释能力。x射线光电子能谱(XPS)表征进一步证明了Pd/Pt的掺杂会诱导产生缺电子的Se位,出现新的高结合能态。此外,密度泛函理论(DFT)计算表明,Pt-ZnSe表面缺乏Se位点可以降低反键轨道填充水平,从而提高Se- hads键的稳定性,增强H2吸附。因此,基于Pt-ZnSe的微机电系统(MEMS)气体传感器在145°C的低工作温度下具有3.22至10 ppm H2的高响应值。将Pt-ZnSe MEMS传感器阵列插入多功能无线传感装置中,可实现氢气农业生产、保存和储存作物的实时H2/温度/湿度监测和云数据传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Diluting the Electric Supply of Surface Selenium Species to Realize Enhanced Hydrogen Monitoring in Agriculture

Diluting the Electric Supply of Surface Selenium Species to Realize Enhanced Hydrogen Monitoring in Agriculture

Diluting the Electric Supply of Surface Selenium Species to Realize Enhanced Hydrogen Monitoring in Agriculture

Electron state of catalyst surface is crucial to optimize the adsorption/intermediate state of gas molecules during the sensing reaction. Herein, we develop an electron-dilution strategy by introducing Pd/Pt species into semiconductor ZnSe to construct electron-deficient Se surface, exhibiting excellent H2 sensing performances. It is found that different metal doping can induce remarkable electric environment changes of Se atoms. For example, compared with Pd, Pt display stronger electronic dilution ability to adjacent Se atoms. X-ray photoelectron spectroscopy (XPS) characterizations further prove that the doping of Pd/Pt will induce the generation of the electron-deficient Se sites, appearing a new and high binding energy state. Furthermore, the density functional theory (DFT) calculations show that the deficient Se sites on the Pt-ZnSe surface could reduce the level of anti-bonding orbital filling, thus enhancing the stability of the Se-Hads bond and strengthening the H2 adsorption. As a result, the Pt-ZnSe based micro-electromechanical systems (MEMS) gas sensors exhibit high response value of 3.22 to 10 ppm H2 at low operation temperature of 145 °C. Inserting the Pt-ZnSe MEMS sensors array into multifunctional wireless sensing device, it can realize real-time H2/temperature/humidity monitoring and cloud data transmission for hydrogen agriculture on production, preserving and storing crop.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信