{"title":"精浆衍生外泌体保存低冷冻性公牛解冻后精液的质量参数。","authors":"Rahele Ranjbar Shamsi, Razi Jafari Jozani, Reza Asadpour, Maryam Rahbar, Morteza Taravat","doi":"10.1089/bio.2024.0077","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Sperm cryopreservation is a useful storage technique in artificial insemination. Nanoparticles and nanovesicles such as exosomes are widely used in sperm cryopreservation procedures to alleviate cold-induced injury inflicted during sperm freezing. <b><i>Objective:</i></b> The objective of the present study was to examine the impact of varying concentrations of exosomes derived from seminal plasma added to a freezing extender on the quality of post-thawed bull sperm. <b><i>Methods:</i></b> Five Holstein bulls were chosen based on their samples having less than 30% progressive motility. After exosome extraction, semen samples from bulls (<i>n</i> = 5) with progressive sperm motility ≤30% were collected, diluted with different exosome concentrations (0, 25, 50, and 100 μg/mL), and aspirated into 0.5 mL straws. After the freeze-thaw process, sperm total and progressive motility, viability, morphology, plasma membrane integrity, mitochondrial activity, and apoptosis status were assessed. Furthermore, the expression levels of annexin (ANX1), dystrophy-associated Fer-1-like protein (DYSF), fibronectin 1 (FN1), and reactive oxygen species modulator 1 (ROMO1) were evaluated via real-time polymerase chain reaction (PCR). <b><i>Results:</i></b> Adding different concentrations of exosomes (25, 50, and 150 μg/mL) significantly increased the progressive motility, viability, and membrane integrity of sperm compared with the control group (<i>p</i> < 0.05). For the apoptosis index, treatment with 100 μg/mL exosomes significantly increased the percentage of live cells (<i>p</i> < 0.05), while the percentage of necrotic cells decreased significantly (<i>p</i> < 0.05) compared with 25 μg/mL exosome. The results of quantitative PCR showed that the expression levels of ANX1 were significantly (<i>p</i> < 0.05) upregulated at 50 μg/mL exosome, and the expression of ROMO1, FN1, and DYSF were downregulated upon treatment with different exosome concentrations. <b><i>Conclusions:</i></b> In conclusion, supplementing the freezing diluent with exosome-derived seminal plasma could preserve the quality parameters of the post-thaw semen of the bull with low freezeability and could be used as a helpful method for reproductive programs.</p>","PeriodicalId":55358,"journal":{"name":"Biopreservation and Biobanking","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seminal Plasma-Derived Exosome Preserves the Quality Parameters of the Post-Thaw Semen of Bulls with Low Freezeability.\",\"authors\":\"Rahele Ranjbar Shamsi, Razi Jafari Jozani, Reza Asadpour, Maryam Rahbar, Morteza Taravat\",\"doi\":\"10.1089/bio.2024.0077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Introduction:</i></b> Sperm cryopreservation is a useful storage technique in artificial insemination. Nanoparticles and nanovesicles such as exosomes are widely used in sperm cryopreservation procedures to alleviate cold-induced injury inflicted during sperm freezing. <b><i>Objective:</i></b> The objective of the present study was to examine the impact of varying concentrations of exosomes derived from seminal plasma added to a freezing extender on the quality of post-thawed bull sperm. <b><i>Methods:</i></b> Five Holstein bulls were chosen based on their samples having less than 30% progressive motility. After exosome extraction, semen samples from bulls (<i>n</i> = 5) with progressive sperm motility ≤30% were collected, diluted with different exosome concentrations (0, 25, 50, and 100 μg/mL), and aspirated into 0.5 mL straws. After the freeze-thaw process, sperm total and progressive motility, viability, morphology, plasma membrane integrity, mitochondrial activity, and apoptosis status were assessed. Furthermore, the expression levels of annexin (ANX1), dystrophy-associated Fer-1-like protein (DYSF), fibronectin 1 (FN1), and reactive oxygen species modulator 1 (ROMO1) were evaluated via real-time polymerase chain reaction (PCR). <b><i>Results:</i></b> Adding different concentrations of exosomes (25, 50, and 150 μg/mL) significantly increased the progressive motility, viability, and membrane integrity of sperm compared with the control group (<i>p</i> < 0.05). For the apoptosis index, treatment with 100 μg/mL exosomes significantly increased the percentage of live cells (<i>p</i> < 0.05), while the percentage of necrotic cells decreased significantly (<i>p</i> < 0.05) compared with 25 μg/mL exosome. The results of quantitative PCR showed that the expression levels of ANX1 were significantly (<i>p</i> < 0.05) upregulated at 50 μg/mL exosome, and the expression of ROMO1, FN1, and DYSF were downregulated upon treatment with different exosome concentrations. <b><i>Conclusions:</i></b> In conclusion, supplementing the freezing diluent with exosome-derived seminal plasma could preserve the quality parameters of the post-thaw semen of the bull with low freezeability and could be used as a helpful method for reproductive programs.</p>\",\"PeriodicalId\":55358,\"journal\":{\"name\":\"Biopreservation and Biobanking\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopreservation and Biobanking\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/bio.2024.0077\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopreservation and Biobanking","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2024.0077","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Seminal Plasma-Derived Exosome Preserves the Quality Parameters of the Post-Thaw Semen of Bulls with Low Freezeability.
Introduction: Sperm cryopreservation is a useful storage technique in artificial insemination. Nanoparticles and nanovesicles such as exosomes are widely used in sperm cryopreservation procedures to alleviate cold-induced injury inflicted during sperm freezing. Objective: The objective of the present study was to examine the impact of varying concentrations of exosomes derived from seminal plasma added to a freezing extender on the quality of post-thawed bull sperm. Methods: Five Holstein bulls were chosen based on their samples having less than 30% progressive motility. After exosome extraction, semen samples from bulls (n = 5) with progressive sperm motility ≤30% were collected, diluted with different exosome concentrations (0, 25, 50, and 100 μg/mL), and aspirated into 0.5 mL straws. After the freeze-thaw process, sperm total and progressive motility, viability, morphology, plasma membrane integrity, mitochondrial activity, and apoptosis status were assessed. Furthermore, the expression levels of annexin (ANX1), dystrophy-associated Fer-1-like protein (DYSF), fibronectin 1 (FN1), and reactive oxygen species modulator 1 (ROMO1) were evaluated via real-time polymerase chain reaction (PCR). Results: Adding different concentrations of exosomes (25, 50, and 150 μg/mL) significantly increased the progressive motility, viability, and membrane integrity of sperm compared with the control group (p < 0.05). For the apoptosis index, treatment with 100 μg/mL exosomes significantly increased the percentage of live cells (p < 0.05), while the percentage of necrotic cells decreased significantly (p < 0.05) compared with 25 μg/mL exosome. The results of quantitative PCR showed that the expression levels of ANX1 were significantly (p < 0.05) upregulated at 50 μg/mL exosome, and the expression of ROMO1, FN1, and DYSF were downregulated upon treatment with different exosome concentrations. Conclusions: In conclusion, supplementing the freezing diluent with exosome-derived seminal plasma could preserve the quality parameters of the post-thaw semen of the bull with low freezeability and could be used as a helpful method for reproductive programs.
Biopreservation and BiobankingBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
自引率
12.50%
发文量
114
期刊介绍:
Biopreservation and Biobanking is the first journal to provide a unifying forum for the peer-reviewed communication of recent advances in the emerging and evolving field of biospecimen procurement, processing, preservation and banking, distribution, and use. The Journal publishes a range of original articles focusing on current challenges and problems in biopreservation, and advances in methods to address these issues related to the processing of macromolecules, cells, and tissues for research.
In a new section dedicated to Emerging Markets and Technologies, the Journal highlights the emergence of new markets and technologies that are either adopting or disrupting the biobank framework as they imprint on society. The solutions presented here are anticipated to help drive innovation within the biobank community.
Biopreservation and Biobanking also explores the ethical, legal, and societal considerations surrounding biobanking and biorepository operation. Ideas and practical solutions relevant to improved quality, efficiency, and sustainability of repositories, and relating to their management, operation and oversight are discussed as well.