Chelsea M Blankenship, Lindsey M Hickson, Tera Quigley, Erik Larsen, Li Lin, Lisa L Hunter
{"title":"在儿童和青少年中使用无线自动听力测试系统的扩展高频测听与手动测听的比较。","authors":"Chelsea M Blankenship, Lindsey M Hickson, Tera Quigley, Erik Larsen, Li Lin, Lisa L Hunter","doi":"10.1097/AUD.0000000000001621","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Valid wireless automated Békésy-like audiometry (ABA) outside a sound booth that includes extended high frequencies (EHF) would increase access to monitoring programs for individuals at risk for hearing loss, particularly those at risk for ototoxicity. The purpose of the study was to compare thresholds obtained with (1) manual audiometry using an Interacoustics Equinox and modified Hughson-Westlake 5 dB threshold technique to automated audiometry using the Wireless Automated Hearing Test System (WAHTS) and a Békésy-like 2 dB threshold technique inside a sound booth, and (2) ABA measured in the sound booth to ABA measured outside the sound booth.</p><p><strong>Design: </strong>Cross-sectional study including 28 typically developing children and adolescents (mean = 14.5 years; range = 10 to 18 years). Audiometric thresholds were measured from 0.25 to 16 kHz with manual audiometry inside the sound booth and with ABA measured both inside and outside the sound booth in counterbalanced order.</p><p><strong>Results: </strong>ABA thresholds measured inside the sound booth were overall about 5 dB better compared with manual thresholds in the conventional frequencies (0.25 to 8 kHz). In the EHFs (10 to 16 kHz), a larger threshold difference was observed, where ABA thresholds were overall about 14 dB better compared with manual thresholds. The majority of ABA thresholds measured outside the sound booth were within ±10 dB of ABA thresholds measured inside the sound booth (conventional: 86%; EHF: 80%). However, only 69% of ABA thresholds measured inside the sound booth were within ±10 dB of manual thresholds in the conventional frequencies and only 32% of ABA thresholds measured inside the sound booth were within ±10 dB of manual thresholds in the EHFs.</p><p><strong>Conclusions: </strong>These results indicate that WAHTS ABA results in better thresholds in conventional frequencies than manual audiometry in children and adolescents, consistent with previous studies in adults. Hearing thresholds for the EHF were better when measured with WAHTS ABA compared with manual audiometry, likely due to different transducer-related calibration values that are not age-adjusted. Additional studies of WAHTS automated Békésy-like EHF thresholds that include healthy pediatric participants are needed to establish age-appropriate normative thresholds for clinical application in monitoring programs for noise-induced hearing loss and/or ototoxicity.</p>","PeriodicalId":55172,"journal":{"name":"Ear and Hearing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended High-Frequency Audiometry Using the Wireless Automated Hearing Test System Compared to Manual Audiometry in Children and Adolescents.\",\"authors\":\"Chelsea M Blankenship, Lindsey M Hickson, Tera Quigley, Erik Larsen, Li Lin, Lisa L Hunter\",\"doi\":\"10.1097/AUD.0000000000001621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Valid wireless automated Békésy-like audiometry (ABA) outside a sound booth that includes extended high frequencies (EHF) would increase access to monitoring programs for individuals at risk for hearing loss, particularly those at risk for ototoxicity. The purpose of the study was to compare thresholds obtained with (1) manual audiometry using an Interacoustics Equinox and modified Hughson-Westlake 5 dB threshold technique to automated audiometry using the Wireless Automated Hearing Test System (WAHTS) and a Békésy-like 2 dB threshold technique inside a sound booth, and (2) ABA measured in the sound booth to ABA measured outside the sound booth.</p><p><strong>Design: </strong>Cross-sectional study including 28 typically developing children and adolescents (mean = 14.5 years; range = 10 to 18 years). Audiometric thresholds were measured from 0.25 to 16 kHz with manual audiometry inside the sound booth and with ABA measured both inside and outside the sound booth in counterbalanced order.</p><p><strong>Results: </strong>ABA thresholds measured inside the sound booth were overall about 5 dB better compared with manual thresholds in the conventional frequencies (0.25 to 8 kHz). In the EHFs (10 to 16 kHz), a larger threshold difference was observed, where ABA thresholds were overall about 14 dB better compared with manual thresholds. The majority of ABA thresholds measured outside the sound booth were within ±10 dB of ABA thresholds measured inside the sound booth (conventional: 86%; EHF: 80%). However, only 69% of ABA thresholds measured inside the sound booth were within ±10 dB of manual thresholds in the conventional frequencies and only 32% of ABA thresholds measured inside the sound booth were within ±10 dB of manual thresholds in the EHFs.</p><p><strong>Conclusions: </strong>These results indicate that WAHTS ABA results in better thresholds in conventional frequencies than manual audiometry in children and adolescents, consistent with previous studies in adults. Hearing thresholds for the EHF were better when measured with WAHTS ABA compared with manual audiometry, likely due to different transducer-related calibration values that are not age-adjusted. Additional studies of WAHTS automated Békésy-like EHF thresholds that include healthy pediatric participants are needed to establish age-appropriate normative thresholds for clinical application in monitoring programs for noise-induced hearing loss and/or ototoxicity.</p>\",\"PeriodicalId\":55172,\"journal\":{\"name\":\"Ear and Hearing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ear and Hearing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/AUD.0000000000001621\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ear and Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/AUD.0000000000001621","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Extended High-Frequency Audiometry Using the Wireless Automated Hearing Test System Compared to Manual Audiometry in Children and Adolescents.
Objectives: Valid wireless automated Békésy-like audiometry (ABA) outside a sound booth that includes extended high frequencies (EHF) would increase access to monitoring programs for individuals at risk for hearing loss, particularly those at risk for ototoxicity. The purpose of the study was to compare thresholds obtained with (1) manual audiometry using an Interacoustics Equinox and modified Hughson-Westlake 5 dB threshold technique to automated audiometry using the Wireless Automated Hearing Test System (WAHTS) and a Békésy-like 2 dB threshold technique inside a sound booth, and (2) ABA measured in the sound booth to ABA measured outside the sound booth.
Design: Cross-sectional study including 28 typically developing children and adolescents (mean = 14.5 years; range = 10 to 18 years). Audiometric thresholds were measured from 0.25 to 16 kHz with manual audiometry inside the sound booth and with ABA measured both inside and outside the sound booth in counterbalanced order.
Results: ABA thresholds measured inside the sound booth were overall about 5 dB better compared with manual thresholds in the conventional frequencies (0.25 to 8 kHz). In the EHFs (10 to 16 kHz), a larger threshold difference was observed, where ABA thresholds were overall about 14 dB better compared with manual thresholds. The majority of ABA thresholds measured outside the sound booth were within ±10 dB of ABA thresholds measured inside the sound booth (conventional: 86%; EHF: 80%). However, only 69% of ABA thresholds measured inside the sound booth were within ±10 dB of manual thresholds in the conventional frequencies and only 32% of ABA thresholds measured inside the sound booth were within ±10 dB of manual thresholds in the EHFs.
Conclusions: These results indicate that WAHTS ABA results in better thresholds in conventional frequencies than manual audiometry in children and adolescents, consistent with previous studies in adults. Hearing thresholds for the EHF were better when measured with WAHTS ABA compared with manual audiometry, likely due to different transducer-related calibration values that are not age-adjusted. Additional studies of WAHTS automated Békésy-like EHF thresholds that include healthy pediatric participants are needed to establish age-appropriate normative thresholds for clinical application in monitoring programs for noise-induced hearing loss and/or ototoxicity.
期刊介绍:
From the basic science of hearing and balance disorders to auditory electrophysiology to amplification and the psychological factors of hearing loss, Ear and Hearing covers all aspects of auditory and vestibular disorders. This multidisciplinary journal consolidates the various factors that contribute to identification, remediation, and audiologic and vestibular rehabilitation. It is the one journal that serves the diverse interest of all members of this professional community -- otologists, audiologists, educators, and to those involved in the design, manufacture, and distribution of amplification systems. The original articles published in the journal focus on assessment, diagnosis, and management of auditory and vestibular disorders.