Minhyuk Lee , Jimin Hwang , Youngseo Song , Sungjee Kim , Nokyoung Park
{"title":"抗mir21结合DNA纳米水凝胶增强癌症治疗。","authors":"Minhyuk Lee , Jimin Hwang , Youngseo Song , Sungjee Kim , Nokyoung Park","doi":"10.1016/j.bioadv.2024.214160","DOIUrl":null,"url":null,"abstract":"<div><div>MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach. In particular, miRNA-21 (miR-21) can be an excellent target as it is an oncogenic miRNA that is upregulated in various cancers including glioblastoma, breast cancer, and colon cancer. However, anti-miRNAs are unstable in the physiological environment and have low cell membrane permeability, making it difficult to accumulate at certain concentrations to have anti-cancer effects within cancer cells. To overcome these difficulties, we developed anti-miR-21 functionalized DNA hydrogel (amiR-21 Dgel). We confirmed the improved physiological stability of amiR-21 Dgel in vitro, and observed that it blocked up to 96.6 % of miR-21 in HeLa cells, and reduced cell viability down to 77.9 % for 72 h. In particular, RT-qPCR analysis demonstrated that blocking of miR-21 induces increased mRNA expression of the tumor suppressor genes, PTEN and PDCD4 by 6.23- and 6.87-fold, respectively. In addition, the Dgel can act as a drug delivery vehicle, intercalating anticancer drugs such as doxorubicin (Dox) to be delivered into cells. DOX, an anticancer drug, showed a synergistic anticancer effect with amiR-21, which was delivered together. We expect that this approach will be a convenient to optimization and highly effective strategy for anticancer therapy employing antisense miRNAs.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"Article 214160"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-miR21-conjugated DNA nanohydrogel for enhanced cancer therapy\",\"authors\":\"Minhyuk Lee , Jimin Hwang , Youngseo Song , Sungjee Kim , Nokyoung Park\",\"doi\":\"10.1016/j.bioadv.2024.214160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach. In particular, miRNA-21 (miR-21) can be an excellent target as it is an oncogenic miRNA that is upregulated in various cancers including glioblastoma, breast cancer, and colon cancer. However, anti-miRNAs are unstable in the physiological environment and have low cell membrane permeability, making it difficult to accumulate at certain concentrations to have anti-cancer effects within cancer cells. To overcome these difficulties, we developed anti-miR-21 functionalized DNA hydrogel (amiR-21 Dgel). We confirmed the improved physiological stability of amiR-21 Dgel in vitro, and observed that it blocked up to 96.6 % of miR-21 in HeLa cells, and reduced cell viability down to 77.9 % for 72 h. In particular, RT-qPCR analysis demonstrated that blocking of miR-21 induces increased mRNA expression of the tumor suppressor genes, PTEN and PDCD4 by 6.23- and 6.87-fold, respectively. In addition, the Dgel can act as a drug delivery vehicle, intercalating anticancer drugs such as doxorubicin (Dox) to be delivered into cells. DOX, an anticancer drug, showed a synergistic anticancer effect with amiR-21, which was delivered together. We expect that this approach will be a convenient to optimization and highly effective strategy for anticancer therapy employing antisense miRNAs.</div></div>\",\"PeriodicalId\":51111,\"journal\":{\"name\":\"Materials Science & Engineering C-Materials for Biological Applications\",\"volume\":\"169 \",\"pages\":\"Article 214160\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science & Engineering C-Materials for Biological Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772950824004035\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950824004035","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Anti-miR21-conjugated DNA nanohydrogel for enhanced cancer therapy
MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach. In particular, miRNA-21 (miR-21) can be an excellent target as it is an oncogenic miRNA that is upregulated in various cancers including glioblastoma, breast cancer, and colon cancer. However, anti-miRNAs are unstable in the physiological environment and have low cell membrane permeability, making it difficult to accumulate at certain concentrations to have anti-cancer effects within cancer cells. To overcome these difficulties, we developed anti-miR-21 functionalized DNA hydrogel (amiR-21 Dgel). We confirmed the improved physiological stability of amiR-21 Dgel in vitro, and observed that it blocked up to 96.6 % of miR-21 in HeLa cells, and reduced cell viability down to 77.9 % for 72 h. In particular, RT-qPCR analysis demonstrated that blocking of miR-21 induces increased mRNA expression of the tumor suppressor genes, PTEN and PDCD4 by 6.23- and 6.87-fold, respectively. In addition, the Dgel can act as a drug delivery vehicle, intercalating anticancer drugs such as doxorubicin (Dox) to be delivered into cells. DOX, an anticancer drug, showed a synergistic anticancer effect with amiR-21, which was delivered together. We expect that this approach will be a convenient to optimization and highly effective strategy for anticancer therapy employing antisense miRNAs.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!