Semanti Ray , Emily Huang , Megan R McMullen , Samreen Jatana , Carol de la Motte , Laura E Nagy
{"title":"35kDa特定大小的透明质酸改善中等肥胖小鼠高脂肪饮食引起的肝损伤。","authors":"Semanti Ray , Emily Huang , Megan R McMullen , Samreen Jatana , Carol de la Motte , Laura E Nagy","doi":"10.1016/j.matbio.2024.12.010","DOIUrl":null,"url":null,"abstract":"<div><div>Obesity is a growing concern in the US and world-wide, associated with an increased risk for several cardiometabolic diseases, including metabolic associated steatotic liver disease (MASLD). Currently, therapeutic interventions to prevent and/or treat MASLD are limited, and research is needed to identify new therapeutic targets. The specific-sized 35 kDa fragment of hyaluronan (HA35), has gut protective and anti-inflammatory properties and a previous pilot clinical study reported it is well tolerated in healthy individuals. Here we tested the hypothesis that HA35 treatment ameliorates high fat diet-induced liver injury. Five-week-old male C57BL/6 J mice were allowed <em>ad lib</em> access to control chow or high fat fructose and cholesterol (FFC) diet over a period of 12 weeks. HA35 was administered at 15mg/kg via oral gavage on the last 6 days of the study as a therapeutic intervention. Mice on FFC diet-gained more body weight compared to those on chow diet, with final body weights ranging from 30.8 to 45.6 g. FFC diet caused hepatocyte injury, increased expression of inflammatory cytokine/chemokine mRNA, as well as indicators of liver fibrosis. When mice were stratified based on their final body weight, only mice <40 g were protected by treatment with HA35. In this group, treatment with HA35 also restored tight junction integrity in the colon and increased expression of α -defensins in the small intestine. Taken together the data suggests that HA35 is an effective therapeutic in ameliorating high fat diet-induced liver inflammation and fibrosis in moderately obese, but not severe, conditions.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"136 ","pages":"Pages 1-8"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"35k Da specific-sized hyaluronan ameliorates high-fat diet-induced liver injury in murine model of moderate obesity\",\"authors\":\"Semanti Ray , Emily Huang , Megan R McMullen , Samreen Jatana , Carol de la Motte , Laura E Nagy\",\"doi\":\"10.1016/j.matbio.2024.12.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Obesity is a growing concern in the US and world-wide, associated with an increased risk for several cardiometabolic diseases, including metabolic associated steatotic liver disease (MASLD). Currently, therapeutic interventions to prevent and/or treat MASLD are limited, and research is needed to identify new therapeutic targets. The specific-sized 35 kDa fragment of hyaluronan (HA35), has gut protective and anti-inflammatory properties and a previous pilot clinical study reported it is well tolerated in healthy individuals. Here we tested the hypothesis that HA35 treatment ameliorates high fat diet-induced liver injury. Five-week-old male C57BL/6 J mice were allowed <em>ad lib</em> access to control chow or high fat fructose and cholesterol (FFC) diet over a period of 12 weeks. HA35 was administered at 15mg/kg via oral gavage on the last 6 days of the study as a therapeutic intervention. Mice on FFC diet-gained more body weight compared to those on chow diet, with final body weights ranging from 30.8 to 45.6 g. FFC diet caused hepatocyte injury, increased expression of inflammatory cytokine/chemokine mRNA, as well as indicators of liver fibrosis. When mice were stratified based on their final body weight, only mice <40 g were protected by treatment with HA35. In this group, treatment with HA35 also restored tight junction integrity in the colon and increased expression of α -defensins in the small intestine. Taken together the data suggests that HA35 is an effective therapeutic in ameliorating high fat diet-induced liver inflammation and fibrosis in moderately obese, but not severe, conditions.</div></div>\",\"PeriodicalId\":49851,\"journal\":{\"name\":\"Matrix Biology\",\"volume\":\"136 \",\"pages\":\"Pages 1-8\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0945053X24001525\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0945053X24001525","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
35k Da specific-sized hyaluronan ameliorates high-fat diet-induced liver injury in murine model of moderate obesity
Obesity is a growing concern in the US and world-wide, associated with an increased risk for several cardiometabolic diseases, including metabolic associated steatotic liver disease (MASLD). Currently, therapeutic interventions to prevent and/or treat MASLD are limited, and research is needed to identify new therapeutic targets. The specific-sized 35 kDa fragment of hyaluronan (HA35), has gut protective and anti-inflammatory properties and a previous pilot clinical study reported it is well tolerated in healthy individuals. Here we tested the hypothesis that HA35 treatment ameliorates high fat diet-induced liver injury. Five-week-old male C57BL/6 J mice were allowed ad lib access to control chow or high fat fructose and cholesterol (FFC) diet over a period of 12 weeks. HA35 was administered at 15mg/kg via oral gavage on the last 6 days of the study as a therapeutic intervention. Mice on FFC diet-gained more body weight compared to those on chow diet, with final body weights ranging from 30.8 to 45.6 g. FFC diet caused hepatocyte injury, increased expression of inflammatory cytokine/chemokine mRNA, as well as indicators of liver fibrosis. When mice were stratified based on their final body weight, only mice <40 g were protected by treatment with HA35. In this group, treatment with HA35 also restored tight junction integrity in the colon and increased expression of α -defensins in the small intestine. Taken together the data suggests that HA35 is an effective therapeutic in ameliorating high fat diet-induced liver inflammation and fibrosis in moderately obese, but not severe, conditions.
期刊介绍:
Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.