高频通风过程中的气体输运机制。

IF 5.8 2区 医学 Q1 Medicine
Thomas J A Scott, Chinthaka Jacob, David G Tingay, Justin S Leontini
{"title":"高频通风过程中的气体输运机制。","authors":"Thomas J A Scott, Chinthaka Jacob, David G Tingay, Justin S Leontini","doi":"10.1186/s12931-024-03049-w","DOIUrl":null,"url":null,"abstract":"<p><p>By virtue of applying small tidal volumes, high-frequency ventilation is advocated as a method of minimizing ventilator-induced lung injury. Lung protective benefits are established in infants, but not in other patient cohorts. Efforts to improve and extend the lung protection potential should consider how fundamental modes of gas transport can be exploited to minimize harmful tidal volumes while maintaining or improving ventilation.This research investigates different models of gas transport during high-frequency ventilation and discusses the extent to which the gas transport mechanisms are considered in each. The research focuses on the rationale for current ventilation protocols, how they were informed by these models, and investigates alternative protocols that may improve gas transport and lung protection. A review of high-frequency ventilation physiology and fluid mechanics literature was performed, and dimensional analyses were conducted showing the relationship between clinical data and the model outputs. We show that contemporary protocols have been informed by resistor-inductor-capacitor, or network, models of the airway-lung system that are formulated around a ventilation pressure cost framework. This framework leads to clinical protocol selection that ventilates patients at frequencies that excite a resonance in the lung. We extend on these models by considering frequencies that are much higher than resonance which further optimize gas transport in the airway via alternative gas transport mechanisms to bulk advection that operate for very low tidal volumes. Our findings suggest it is unlikely that gas transport is optimally exploited during current approaches to high-frequency ventilation and protocols that differ significantly from those currently in use could achieve ventilation while using very low tidal volumes.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":"25 1","pages":"446"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682653/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gas transport mechanisms during high-frequency ventilation.\",\"authors\":\"Thomas J A Scott, Chinthaka Jacob, David G Tingay, Justin S Leontini\",\"doi\":\"10.1186/s12931-024-03049-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By virtue of applying small tidal volumes, high-frequency ventilation is advocated as a method of minimizing ventilator-induced lung injury. Lung protective benefits are established in infants, but not in other patient cohorts. Efforts to improve and extend the lung protection potential should consider how fundamental modes of gas transport can be exploited to minimize harmful tidal volumes while maintaining or improving ventilation.This research investigates different models of gas transport during high-frequency ventilation and discusses the extent to which the gas transport mechanisms are considered in each. The research focuses on the rationale for current ventilation protocols, how they were informed by these models, and investigates alternative protocols that may improve gas transport and lung protection. A review of high-frequency ventilation physiology and fluid mechanics literature was performed, and dimensional analyses were conducted showing the relationship between clinical data and the model outputs. We show that contemporary protocols have been informed by resistor-inductor-capacitor, or network, models of the airway-lung system that are formulated around a ventilation pressure cost framework. This framework leads to clinical protocol selection that ventilates patients at frequencies that excite a resonance in the lung. We extend on these models by considering frequencies that are much higher than resonance which further optimize gas transport in the airway via alternative gas transport mechanisms to bulk advection that operate for very low tidal volumes. Our findings suggest it is unlikely that gas transport is optimally exploited during current approaches to high-frequency ventilation and protocols that differ significantly from those currently in use could achieve ventilation while using very low tidal volumes.</p>\",\"PeriodicalId\":49131,\"journal\":{\"name\":\"Respiratory Research\",\"volume\":\"25 1\",\"pages\":\"446\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682653/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12931-024-03049-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-024-03049-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

高频通气由于潮气量小,被认为是减少呼吸机所致肺损伤的一种方法。在婴儿中有肺保护作用,但在其他患者群体中没有。改善和扩大肺保护潜力的努力应考虑如何利用气体输送的基本模式,以尽量减少有害的潮汐量,同时保持或改善通风。本研究探讨了高频通风中不同的气体输运模型,并讨论了每种模型中考虑的气体输运机制的程度。该研究的重点是当前通风方案的基本原理,这些模型如何告知它们,并研究可能改善气体输送和肺保护的替代方案。我们回顾了高频通气生理学和流体力学文献,并进行了量纲分析,显示了临床数据与模型输出之间的关系。我们表明,当前的方案是通过围绕通风压力成本框架制定的气道-肺系统的电阻-电感-电容器或网络模型来告知的。这一框架导致临床方案选择,以激发肺部共振的频率为患者通气。我们通过考虑比共振高得多的频率来扩展这些模型,这进一步优化了气道中的气体输送,通过替代气体输送机制到在非常低的潮汐量下运行的整体平流。我们的研究结果表明,在目前的高频通风方法中,天然气输送不太可能得到最佳利用,与目前使用的方案有很大不同,可以在使用非常低的潮汐量时实现通风。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gas transport mechanisms during high-frequency ventilation.

By virtue of applying small tidal volumes, high-frequency ventilation is advocated as a method of minimizing ventilator-induced lung injury. Lung protective benefits are established in infants, but not in other patient cohorts. Efforts to improve and extend the lung protection potential should consider how fundamental modes of gas transport can be exploited to minimize harmful tidal volumes while maintaining or improving ventilation.This research investigates different models of gas transport during high-frequency ventilation and discusses the extent to which the gas transport mechanisms are considered in each. The research focuses on the rationale for current ventilation protocols, how they were informed by these models, and investigates alternative protocols that may improve gas transport and lung protection. A review of high-frequency ventilation physiology and fluid mechanics literature was performed, and dimensional analyses were conducted showing the relationship between clinical data and the model outputs. We show that contemporary protocols have been informed by resistor-inductor-capacitor, or network, models of the airway-lung system that are formulated around a ventilation pressure cost framework. This framework leads to clinical protocol selection that ventilates patients at frequencies that excite a resonance in the lung. We extend on these models by considering frequencies that are much higher than resonance which further optimize gas transport in the airway via alternative gas transport mechanisms to bulk advection that operate for very low tidal volumes. Our findings suggest it is unlikely that gas transport is optimally exploited during current approaches to high-frequency ventilation and protocols that differ significantly from those currently in use could achieve ventilation while using very low tidal volumes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Respiratory Research
Respiratory Research RESPIRATORY SYSTEM-
CiteScore
9.70
自引率
1.70%
发文量
314
审稿时长
4-8 weeks
期刊介绍: Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases. As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion. Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信