Judith Gufler, Petra Heffeter, Christian R Kowol, Sonja Hager, Doris Marko
{"title":"真菌毒素互胺醇和脱氧雪腐镰刀菌醇对奥沙利铂和曲平免疫调节作用的相反作用。","authors":"Judith Gufler, Petra Heffeter, Christian R Kowol, Sonja Hager, Doris Marko","doi":"10.1016/j.tox.2024.154039","DOIUrl":null,"url":null,"abstract":"<p><p>Mycotoxin occurrence in food worldwide is estimated to increase due to climate change. Moreover, studies on how these food contaminants interfere with medications and especially anticancer therapies are rare. With the rise of anticancer immunotherapies, particularly mycotoxins with immunomodulatory activity, such as alternariol (AOH) or deoxynivalenol (DON), are of great concern. Both mycotoxins interfere with the pro-inflammatory nuclear factor kappa B (NF-κB) pathway in myeloid cells. This pathway not only plays an important role in the anticancer immune response but also inflammatory side effects induced by chemotherapeutic drugs. Consequently, the aim of this study was to investigate possible beneficial or detrimental immunomodulatory interactions between these mycotoxins and anticancer drugs. To assess the combined influence of mycotoxins and anticancer therapies on immune cell stimulation, THP-1 NF-κB reporter cells were utilized as monocytes as well as differentiated and polarized macrophages. Parameters for activation (NF-κB activity and protein expression), differentiation (CD14 and CD71 surface marker expression) and polarization (interleukin 10 (IL10), interleukin 8 (CXCL8), tumor necrosis factor α (TNF), prostaglandin-endoperoxide synthase 2 expression and CXCL8 secretion) were assessed upon combinatory treatment. Both mycotoxins affected the immunostimulatory effects of the pre-selected anticancer drugs oxaliplatin and triapine, although in opposing directions. While AOH generally suppressed a drug-induced activation and increased anti-inflammatory IL10 levels, DON potentiated activation and pro-inflammatory markers, such as CXCL8 and TNF in immune cells. In conclusion, AOH and DON have the potential to alter the immunological effects of anticancer therapies, which should be considered during therapy as well as in their future risk assessment.</p>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":" ","pages":"154039"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opposing effects of mycotoxins alternariol and deoxynivalenol on the immunomodulatory effects of oxaliplatin and triapine.\",\"authors\":\"Judith Gufler, Petra Heffeter, Christian R Kowol, Sonja Hager, Doris Marko\",\"doi\":\"10.1016/j.tox.2024.154039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mycotoxin occurrence in food worldwide is estimated to increase due to climate change. Moreover, studies on how these food contaminants interfere with medications and especially anticancer therapies are rare. With the rise of anticancer immunotherapies, particularly mycotoxins with immunomodulatory activity, such as alternariol (AOH) or deoxynivalenol (DON), are of great concern. Both mycotoxins interfere with the pro-inflammatory nuclear factor kappa B (NF-κB) pathway in myeloid cells. This pathway not only plays an important role in the anticancer immune response but also inflammatory side effects induced by chemotherapeutic drugs. Consequently, the aim of this study was to investigate possible beneficial or detrimental immunomodulatory interactions between these mycotoxins and anticancer drugs. To assess the combined influence of mycotoxins and anticancer therapies on immune cell stimulation, THP-1 NF-κB reporter cells were utilized as monocytes as well as differentiated and polarized macrophages. Parameters for activation (NF-κB activity and protein expression), differentiation (CD14 and CD71 surface marker expression) and polarization (interleukin 10 (IL10), interleukin 8 (CXCL8), tumor necrosis factor α (TNF), prostaglandin-endoperoxide synthase 2 expression and CXCL8 secretion) were assessed upon combinatory treatment. Both mycotoxins affected the immunostimulatory effects of the pre-selected anticancer drugs oxaliplatin and triapine, although in opposing directions. While AOH generally suppressed a drug-induced activation and increased anti-inflammatory IL10 levels, DON potentiated activation and pro-inflammatory markers, such as CXCL8 and TNF in immune cells. In conclusion, AOH and DON have the potential to alter the immunological effects of anticancer therapies, which should be considered during therapy as well as in their future risk assessment.</p>\",\"PeriodicalId\":23159,\"journal\":{\"name\":\"Toxicology\",\"volume\":\" \",\"pages\":\"154039\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tox.2024.154039\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tox.2024.154039","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Opposing effects of mycotoxins alternariol and deoxynivalenol on the immunomodulatory effects of oxaliplatin and triapine.
Mycotoxin occurrence in food worldwide is estimated to increase due to climate change. Moreover, studies on how these food contaminants interfere with medications and especially anticancer therapies are rare. With the rise of anticancer immunotherapies, particularly mycotoxins with immunomodulatory activity, such as alternariol (AOH) or deoxynivalenol (DON), are of great concern. Both mycotoxins interfere with the pro-inflammatory nuclear factor kappa B (NF-κB) pathway in myeloid cells. This pathway not only plays an important role in the anticancer immune response but also inflammatory side effects induced by chemotherapeutic drugs. Consequently, the aim of this study was to investigate possible beneficial or detrimental immunomodulatory interactions between these mycotoxins and anticancer drugs. To assess the combined influence of mycotoxins and anticancer therapies on immune cell stimulation, THP-1 NF-κB reporter cells were utilized as monocytes as well as differentiated and polarized macrophages. Parameters for activation (NF-κB activity and protein expression), differentiation (CD14 and CD71 surface marker expression) and polarization (interleukin 10 (IL10), interleukin 8 (CXCL8), tumor necrosis factor α (TNF), prostaglandin-endoperoxide synthase 2 expression and CXCL8 secretion) were assessed upon combinatory treatment. Both mycotoxins affected the immunostimulatory effects of the pre-selected anticancer drugs oxaliplatin and triapine, although in opposing directions. While AOH generally suppressed a drug-induced activation and increased anti-inflammatory IL10 levels, DON potentiated activation and pro-inflammatory markers, such as CXCL8 and TNF in immune cells. In conclusion, AOH and DON have the potential to alter the immunological effects of anticancer therapies, which should be considered during therapy as well as in their future risk assessment.
期刊介绍:
Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.