Xingju Wang , Jian Wen , Hairui Tian , Xiaoxiao Li , Wenhai Xie , Kang Zou
{"title":"SDF-1/CXCR4轴通过调控转录抑制因子PLZF维持猪早孕未分化状态。","authors":"Xingju Wang , Jian Wen , Hairui Tian , Xiaoxiao Li , Wenhai Xie , Kang Zou","doi":"10.1016/j.theriogenology.2024.12.018","DOIUrl":null,"url":null,"abstract":"<div><div>Prospermatogonia (ProSGs), the progenitors of spermatogonial stem cells in neonatal testes, undergo critical migration to the testicular microenvironment—a fundamental process for testicular development and subsequent spermatogenic capacity. The SDF-1/CXCR4 chemokine axis serves as an essential molecular guidance mechanism, directing ProSGs toward the basal membrane of seminiferous tubules. Nevertheless, the precise molecular mechanisms governing this axis remain incompletely understood. Utilizing a porcine in vitro model system, this investigation elucidated the molecular mechanisms underlying the SDF-1/CXCR4 axis in ProSGs fate determination. Through integrated molecular and transcriptomic analyses, we investigated the consequences of CXCR4 inhibition on ProSG cellular dynamics. Our findings demonstrated that the SDF-1/CXCR4 axis exerts regulatory control over ProSGs differentiation via the PI3K-AKT-AP-1 signaling cascade. This regulation significantly influences the transcriptional landscape of ProSGs, particularly modulating the expression of PLZF, a crucial suppressor of spermatogonial differentiation, and DMRT1, an essential mediator of germ cell differentiation. These findings elucidate the molecular mechanisms orchestrating ProSGs homing and emphasize the significance of maintaining male reproductive competence. Furthermore, this research could enhance our understanding of ProSGs biology and its relationship to boar fertility, while potentially facilitating the development of innovative reproductive technologies and sustainable livestock management strategies.</div></div>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":"234 ","pages":"Pages 198-207"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SDF-1/CXCR4 axis maintains porcine prospermatogonia undifferentiated state through regulation of transcription suppressor PLZF\",\"authors\":\"Xingju Wang , Jian Wen , Hairui Tian , Xiaoxiao Li , Wenhai Xie , Kang Zou\",\"doi\":\"10.1016/j.theriogenology.2024.12.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Prospermatogonia (ProSGs), the progenitors of spermatogonial stem cells in neonatal testes, undergo critical migration to the testicular microenvironment—a fundamental process for testicular development and subsequent spermatogenic capacity. The SDF-1/CXCR4 chemokine axis serves as an essential molecular guidance mechanism, directing ProSGs toward the basal membrane of seminiferous tubules. Nevertheless, the precise molecular mechanisms governing this axis remain incompletely understood. Utilizing a porcine in vitro model system, this investigation elucidated the molecular mechanisms underlying the SDF-1/CXCR4 axis in ProSGs fate determination. Through integrated molecular and transcriptomic analyses, we investigated the consequences of CXCR4 inhibition on ProSG cellular dynamics. Our findings demonstrated that the SDF-1/CXCR4 axis exerts regulatory control over ProSGs differentiation via the PI3K-AKT-AP-1 signaling cascade. This regulation significantly influences the transcriptional landscape of ProSGs, particularly modulating the expression of PLZF, a crucial suppressor of spermatogonial differentiation, and DMRT1, an essential mediator of germ cell differentiation. These findings elucidate the molecular mechanisms orchestrating ProSGs homing and emphasize the significance of maintaining male reproductive competence. Furthermore, this research could enhance our understanding of ProSGs biology and its relationship to boar fertility, while potentially facilitating the development of innovative reproductive technologies and sustainable livestock management strategies.</div></div>\",\"PeriodicalId\":23131,\"journal\":{\"name\":\"Theriogenology\",\"volume\":\"234 \",\"pages\":\"Pages 198-207\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theriogenology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093691X24005119\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theriogenology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093691X24005119","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
SDF-1/CXCR4 axis maintains porcine prospermatogonia undifferentiated state through regulation of transcription suppressor PLZF
Prospermatogonia (ProSGs), the progenitors of spermatogonial stem cells in neonatal testes, undergo critical migration to the testicular microenvironment—a fundamental process for testicular development and subsequent spermatogenic capacity. The SDF-1/CXCR4 chemokine axis serves as an essential molecular guidance mechanism, directing ProSGs toward the basal membrane of seminiferous tubules. Nevertheless, the precise molecular mechanisms governing this axis remain incompletely understood. Utilizing a porcine in vitro model system, this investigation elucidated the molecular mechanisms underlying the SDF-1/CXCR4 axis in ProSGs fate determination. Through integrated molecular and transcriptomic analyses, we investigated the consequences of CXCR4 inhibition on ProSG cellular dynamics. Our findings demonstrated that the SDF-1/CXCR4 axis exerts regulatory control over ProSGs differentiation via the PI3K-AKT-AP-1 signaling cascade. This regulation significantly influences the transcriptional landscape of ProSGs, particularly modulating the expression of PLZF, a crucial suppressor of spermatogonial differentiation, and DMRT1, an essential mediator of germ cell differentiation. These findings elucidate the molecular mechanisms orchestrating ProSGs homing and emphasize the significance of maintaining male reproductive competence. Furthermore, this research could enhance our understanding of ProSGs biology and its relationship to boar fertility, while potentially facilitating the development of innovative reproductive technologies and sustainable livestock management strategies.
期刊介绍:
Theriogenology provides an international forum for researchers, clinicians, and industry professionals in animal reproductive biology. This acclaimed journal publishes articles on a wide range of topics in reproductive and developmental biology, of domestic mammal, avian, and aquatic species as well as wild species which are the object of veterinary care in research or conservation programs.