基于广义同步的广义读出油藏计算。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Akane Ohkubo, Masanobu Inubushi
{"title":"基于广义同步的广义读出油藏计算。","authors":"Akane Ohkubo, Masanobu Inubushi","doi":"10.1038/s41598-024-81880-3","DOIUrl":null,"url":null,"abstract":"<p><p>Reservoir computing is a machine learning framework that exploits nonlinear dynamics, exhibiting significant computational capabilities. One of the defining characteristics of reservoir computing is that only linear output, given by a linear combination of reservoir variables, is trained. Inspired by recent mathematical studies of generalized synchronization, we propose a novel reservoir computing framework with a generalized readout, including a nonlinear combination of reservoir variables. Learning prediction tasks can be formulated as an approximation problem of a target map that provides true prediction values. Analysis of the map suggests an interpretation that the linear readout corresponds to a linearization of the map, and further that the generalized readout corresponds to a higher-order approximation of the map. Numerical study shows that introducing a generalized readout, corresponding to the quadratic and cubic approximation of the map, leads to a significant improvement in accuracy and an unexpected enhancement in robustness in the short- and long-term prediction of Lorenz and Rössler chaos. Towards applications of physical reservoir computing, we particularly focus on how the generalized readout effectively exploits low-dimensional reservoir dynamics.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30918"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680959/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reservoir computing with generalized readout based on generalized synchronization.\",\"authors\":\"Akane Ohkubo, Masanobu Inubushi\",\"doi\":\"10.1038/s41598-024-81880-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reservoir computing is a machine learning framework that exploits nonlinear dynamics, exhibiting significant computational capabilities. One of the defining characteristics of reservoir computing is that only linear output, given by a linear combination of reservoir variables, is trained. Inspired by recent mathematical studies of generalized synchronization, we propose a novel reservoir computing framework with a generalized readout, including a nonlinear combination of reservoir variables. Learning prediction tasks can be formulated as an approximation problem of a target map that provides true prediction values. Analysis of the map suggests an interpretation that the linear readout corresponds to a linearization of the map, and further that the generalized readout corresponds to a higher-order approximation of the map. Numerical study shows that introducing a generalized readout, corresponding to the quadratic and cubic approximation of the map, leads to a significant improvement in accuracy and an unexpected enhancement in robustness in the short- and long-term prediction of Lorenz and Rössler chaos. Towards applications of physical reservoir computing, we particularly focus on how the generalized readout effectively exploits low-dimensional reservoir dynamics.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"30918\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680959/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-81880-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-81880-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

油藏计算是一种利用非线性动力学的机器学习框架,具有重要的计算能力。储层计算的一个定义特征是,只训练由储层变量的线性组合给出的线性输出。受最近广义同步数学研究的启发,我们提出了一种具有广义读出的新型油藏计算框架,包括油藏变量的非线性组合。学习预测任务可以被表述为提供真实预测值的目标映射的近似问题。对地图的分析表明,线性读数对应于地图的线性化,进一步的广义读数对应于地图的高阶近似值。数值研究表明,在Lorenz和Rössler混沌的短期和长期预测中,引入广义读出,对应于映射的二次和三次近似,可以显著提高精度,并意想不到地增强鲁棒性。对于物理油藏计算的应用,我们特别关注广义读出如何有效地利用低维油藏动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reservoir computing with generalized readout based on generalized synchronization.

Reservoir computing is a machine learning framework that exploits nonlinear dynamics, exhibiting significant computational capabilities. One of the defining characteristics of reservoir computing is that only linear output, given by a linear combination of reservoir variables, is trained. Inspired by recent mathematical studies of generalized synchronization, we propose a novel reservoir computing framework with a generalized readout, including a nonlinear combination of reservoir variables. Learning prediction tasks can be formulated as an approximation problem of a target map that provides true prediction values. Analysis of the map suggests an interpretation that the linear readout corresponds to a linearization of the map, and further that the generalized readout corresponds to a higher-order approximation of the map. Numerical study shows that introducing a generalized readout, corresponding to the quadratic and cubic approximation of the map, leads to a significant improvement in accuracy and an unexpected enhancement in robustness in the short- and long-term prediction of Lorenz and Rössler chaos. Towards applications of physical reservoir computing, we particularly focus on how the generalized readout effectively exploits low-dimensional reservoir dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信