Fannian Meng, Liujie Wang, Hao Li, Wenliao Du, Xiaoyun Gong, Changjun Wu, Shuangqiang Luo
{"title":"基于生成对抗网络样本增强和最大熵法的滚动轴承可靠性评估。","authors":"Fannian Meng, Liujie Wang, Hao Li, Wenliao Du, Xiaoyun Gong, Changjun Wu, Shuangqiang Luo","doi":"10.1038/s41598-024-82452-1","DOIUrl":null,"url":null,"abstract":"<p><p>Aiming at the difficulty of extracting vibration data under actual working conditions of rolling bearings, this paper proposes a bearing reliability evaluation method based on generative adversarial network sample enhancement and maximum entropy method under the condition of few samples. Based on generative adversarial network, data sample enhancement under few samples is carried out, and the reliability analysis model is established by using the maximum entropy principle and Poisson process. The reliability is evaluated according to the reliability variation frequency, variation speed and variation acceleration. The analysis results show that with the gradual increase of running time, the reliability variation frequency shows a nonlinear growth trend, which can be roughly divided into the initial running-in stage, the stable running-in stage and the intense running-in stage. The reliability variation speed is then used to distinguish the specific starting time of the three stages, and finally the preliminary relationship between the reliability variation acceleration and the remaining life is obtained. The experimental results of the XJTU-SY dataset show that compared with the existing reliability evaluation model, the proposed model has the advantages of less samples, no need for preprocessing and higher accuracy. The proposed model has made a beneficial supplement to the existing reliability analysis methods.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"31185"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682088/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reliability evaluation of rolling bearings based on generative adversarial network sample enhancement and maximum entropy method.\",\"authors\":\"Fannian Meng, Liujie Wang, Hao Li, Wenliao Du, Xiaoyun Gong, Changjun Wu, Shuangqiang Luo\",\"doi\":\"10.1038/s41598-024-82452-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aiming at the difficulty of extracting vibration data under actual working conditions of rolling bearings, this paper proposes a bearing reliability evaluation method based on generative adversarial network sample enhancement and maximum entropy method under the condition of few samples. Based on generative adversarial network, data sample enhancement under few samples is carried out, and the reliability analysis model is established by using the maximum entropy principle and Poisson process. The reliability is evaluated according to the reliability variation frequency, variation speed and variation acceleration. The analysis results show that with the gradual increase of running time, the reliability variation frequency shows a nonlinear growth trend, which can be roughly divided into the initial running-in stage, the stable running-in stage and the intense running-in stage. The reliability variation speed is then used to distinguish the specific starting time of the three stages, and finally the preliminary relationship between the reliability variation acceleration and the remaining life is obtained. The experimental results of the XJTU-SY dataset show that compared with the existing reliability evaluation model, the proposed model has the advantages of less samples, no need for preprocessing and higher accuracy. The proposed model has made a beneficial supplement to the existing reliability analysis methods.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"31185\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682088/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-82452-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82452-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Reliability evaluation of rolling bearings based on generative adversarial network sample enhancement and maximum entropy method.
Aiming at the difficulty of extracting vibration data under actual working conditions of rolling bearings, this paper proposes a bearing reliability evaluation method based on generative adversarial network sample enhancement and maximum entropy method under the condition of few samples. Based on generative adversarial network, data sample enhancement under few samples is carried out, and the reliability analysis model is established by using the maximum entropy principle and Poisson process. The reliability is evaluated according to the reliability variation frequency, variation speed and variation acceleration. The analysis results show that with the gradual increase of running time, the reliability variation frequency shows a nonlinear growth trend, which can be roughly divided into the initial running-in stage, the stable running-in stage and the intense running-in stage. The reliability variation speed is then used to distinguish the specific starting time of the three stages, and finally the preliminary relationship between the reliability variation acceleration and the remaining life is obtained. The experimental results of the XJTU-SY dataset show that compared with the existing reliability evaluation model, the proposed model has the advantages of less samples, no need for preprocessing and higher accuracy. The proposed model has made a beneficial supplement to the existing reliability analysis methods.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.