细菌群体感应在植物生长促进中的作用。

IF 4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Aparna Anil Singh, Anil Kumar Singh
{"title":"细菌群体感应在植物生长促进中的作用。","authors":"Aparna Anil Singh, Anil Kumar Singh","doi":"10.1007/s11274-024-04232-3","DOIUrl":null,"url":null,"abstract":"<p><p>Quorum sensing (QS) also known as bacterial cell-cell communication or bacterial crosstalk is a phenomenon regulating various bacterial traits that can affect plant growth and defence. Similarities in the structure of root exudates and bacterial signalling molecules have tremendous implications governing the plant heath. The rhizosphere ecosystem being an excellent example of plant-microbe and microbe-microbe interactions harbours a variety of microorganisms exhibiting quorum sensing. Phytochemicals present in plant root exudates and QS signal molecules as well as volatile organic compounds (VOCs) produced by microorganisms work in coordination to establish intra- and inter-species communications. Interestingly, a number of plant growth promoting rhziobacterial (PGPR) activities like effective/enhanced root colonization, nutrient uptake, nodulation, nitrogen fixation, production of plant hormones, antimicrobial compounds and induction of plant defences can be attributed directly or indirectly to their quorum sensing and quenching abilities. Although not completely understood, root development, stress tolerance and defence against phytopathogens are some of the implications of such abilities which might prove beneficial for sustainable agriculture. Deciphering the mechanism of these interactions would be instrumental in improving crop health. Plant beneficial microorganisms employing QS and QS inhibition (QSI) strategies have been discussed in this review.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 1","pages":"18"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of bacterial quorum sensing in plant growth promotion.\",\"authors\":\"Aparna Anil Singh, Anil Kumar Singh\",\"doi\":\"10.1007/s11274-024-04232-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quorum sensing (QS) also known as bacterial cell-cell communication or bacterial crosstalk is a phenomenon regulating various bacterial traits that can affect plant growth and defence. Similarities in the structure of root exudates and bacterial signalling molecules have tremendous implications governing the plant heath. The rhizosphere ecosystem being an excellent example of plant-microbe and microbe-microbe interactions harbours a variety of microorganisms exhibiting quorum sensing. Phytochemicals present in plant root exudates and QS signal molecules as well as volatile organic compounds (VOCs) produced by microorganisms work in coordination to establish intra- and inter-species communications. Interestingly, a number of plant growth promoting rhziobacterial (PGPR) activities like effective/enhanced root colonization, nutrient uptake, nodulation, nitrogen fixation, production of plant hormones, antimicrobial compounds and induction of plant defences can be attributed directly or indirectly to their quorum sensing and quenching abilities. Although not completely understood, root development, stress tolerance and defence against phytopathogens are some of the implications of such abilities which might prove beneficial for sustainable agriculture. Deciphering the mechanism of these interactions would be instrumental in improving crop health. Plant beneficial microorganisms employing QS and QS inhibition (QSI) strategies have been discussed in this review.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"41 1\",\"pages\":\"18\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-04232-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04232-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

群体感应(Quorum sensing, QS)也被称为细菌细胞间通讯或细菌串扰,是一种调节各种细菌特性的现象,可以影响植物的生长和防御。根分泌物和细菌信号分子结构的相似性对植物健康具有重要的指导意义。根际生态系统是植物-微生物和微生物-微生物相互作用的一个很好的例子,它包含了多种表现出群体感应的微生物。植物根系分泌物中的植物化学物质和QS信号分子以及微生物产生的挥发性有机化合物(VOCs)协同工作,建立物种内和物种间的通讯。有趣的是,许多促进植物生长的根杆菌(PGPR)活性,如有效/增强的根定植、营养吸收、结瘤、固氮、植物激素的产生、抗菌化合物和植物防御的诱导,都可以直接或间接地归因于它们的群体感应和猝灭能力。虽然还没有完全了解,但根系发育、抗逆性和对植物病原体的防御是这种能力的一些含义,可能对可持续农业有益。破译这些相互作用的机制将有助于改善作物健康。本文对植物有益微生物采用QS和QS抑制(QSI)策略进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of bacterial quorum sensing in plant growth promotion.

Quorum sensing (QS) also known as bacterial cell-cell communication or bacterial crosstalk is a phenomenon regulating various bacterial traits that can affect plant growth and defence. Similarities in the structure of root exudates and bacterial signalling molecules have tremendous implications governing the plant heath. The rhizosphere ecosystem being an excellent example of plant-microbe and microbe-microbe interactions harbours a variety of microorganisms exhibiting quorum sensing. Phytochemicals present in plant root exudates and QS signal molecules as well as volatile organic compounds (VOCs) produced by microorganisms work in coordination to establish intra- and inter-species communications. Interestingly, a number of plant growth promoting rhziobacterial (PGPR) activities like effective/enhanced root colonization, nutrient uptake, nodulation, nitrogen fixation, production of plant hormones, antimicrobial compounds and induction of plant defences can be attributed directly or indirectly to their quorum sensing and quenching abilities. Although not completely understood, root development, stress tolerance and defence against phytopathogens are some of the implications of such abilities which might prove beneficial for sustainable agriculture. Deciphering the mechanism of these interactions would be instrumental in improving crop health. Plant beneficial microorganisms employing QS and QS inhibition (QSI) strategies have been discussed in this review.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World journal of microbiology & biotechnology
World journal of microbiology & biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.30
自引率
2.40%
发文量
257
审稿时长
2.5 months
期刊介绍: World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology. Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions. Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories: · Virology · Simple isolation of microbes from local sources · Simple descriptions of an environment or reports on a procedure · Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism · Data reporting on host response to microbes · Optimization of a procedure · Description of the biological effects of not fully identified compounds or undefined extracts of natural origin · Data on not fully purified enzymes or procedures in which they are applied All articles published in the Journal are independently refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信