Zhuoling Cheng, Xuekui Bu, Qingnan Wang, Tao Yang, Jihui Tu
{"title":"基于脑电图的多尺度动态CNN和门控变压器情感识别。","authors":"Zhuoling Cheng, Xuekui Bu, Qingnan Wang, Tao Yang, Jihui Tu","doi":"10.1038/s41598-024-82705-z","DOIUrl":null,"url":null,"abstract":"<p><p>Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer. First, the Multi-Scale Dynamic CNN is used to extract complex spatial and spectral features from raw EEG signals, which not only avoids information loss but also reduces computational costs associated with the time-frequency conversion of signals. Then, the Gated Transformer Encoder is utilized to capture global dependencies of EEG signals. This encoder focuses on specific regions of the input sequence while reducing computational resources through parallel processing with the improved multi-head self-attention mechanisms. Third, the Temporal Convolution Network is used to extract temporal features from the EEG signals. Finally, the extracted abstract features are fed into a classification module for emotion recognition. The proposed method was evaluated on three publicly available datasets: DEAP, SEED, and SEED_IV. Experimental results demonstrate the high accuracy and efficiency of the proposed method for emotion recognition. This approach proves to be robust and suitable for various practical applications. By addressing challenges posed by existing methods, the proposed method provides a valuable and effective solution for the field of Brain-Computer Interface (BCI).</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"31319"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682401/pdf/","citationCount":"0","resultStr":"{\"title\":\"EEG-based emotion recognition using multi-scale dynamic CNN and gated transformer.\",\"authors\":\"Zhuoling Cheng, Xuekui Bu, Qingnan Wang, Tao Yang, Jihui Tu\",\"doi\":\"10.1038/s41598-024-82705-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer. First, the Multi-Scale Dynamic CNN is used to extract complex spatial and spectral features from raw EEG signals, which not only avoids information loss but also reduces computational costs associated with the time-frequency conversion of signals. Then, the Gated Transformer Encoder is utilized to capture global dependencies of EEG signals. This encoder focuses on specific regions of the input sequence while reducing computational resources through parallel processing with the improved multi-head self-attention mechanisms. Third, the Temporal Convolution Network is used to extract temporal features from the EEG signals. Finally, the extracted abstract features are fed into a classification module for emotion recognition. The proposed method was evaluated on three publicly available datasets: DEAP, SEED, and SEED_IV. Experimental results demonstrate the high accuracy and efficiency of the proposed method for emotion recognition. This approach proves to be robust and suitable for various practical applications. By addressing challenges posed by existing methods, the proposed method provides a valuable and effective solution for the field of Brain-Computer Interface (BCI).</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"31319\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682401/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-82705-z\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82705-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
EEG-based emotion recognition using multi-scale dynamic CNN and gated transformer.
Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer. First, the Multi-Scale Dynamic CNN is used to extract complex spatial and spectral features from raw EEG signals, which not only avoids information loss but also reduces computational costs associated with the time-frequency conversion of signals. Then, the Gated Transformer Encoder is utilized to capture global dependencies of EEG signals. This encoder focuses on specific regions of the input sequence while reducing computational resources through parallel processing with the improved multi-head self-attention mechanisms. Third, the Temporal Convolution Network is used to extract temporal features from the EEG signals. Finally, the extracted abstract features are fed into a classification module for emotion recognition. The proposed method was evaluated on three publicly available datasets: DEAP, SEED, and SEED_IV. Experimental results demonstrate the high accuracy and efficiency of the proposed method for emotion recognition. This approach proves to be robust and suitable for various practical applications. By addressing challenges posed by existing methods, the proposed method provides a valuable and effective solution for the field of Brain-Computer Interface (BCI).
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.