基于脑电图的多尺度动态CNN和门控变压器情感识别。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhuoling Cheng, Xuekui Bu, Qingnan Wang, Tao Yang, Jihui Tu
{"title":"基于脑电图的多尺度动态CNN和门控变压器情感识别。","authors":"Zhuoling Cheng, Xuekui Bu, Qingnan Wang, Tao Yang, Jihui Tu","doi":"10.1038/s41598-024-82705-z","DOIUrl":null,"url":null,"abstract":"<p><p>Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer. First, the Multi-Scale Dynamic CNN is used to extract complex spatial and spectral features from raw EEG signals, which not only avoids information loss but also reduces computational costs associated with the time-frequency conversion of signals. Then, the Gated Transformer Encoder is utilized to capture global dependencies of EEG signals. This encoder focuses on specific regions of the input sequence while reducing computational resources through parallel processing with the improved multi-head self-attention mechanisms. Third, the Temporal Convolution Network is used to extract temporal features from the EEG signals. Finally, the extracted abstract features are fed into a classification module for emotion recognition. The proposed method was evaluated on three publicly available datasets: DEAP, SEED, and SEED_IV. Experimental results demonstrate the high accuracy and efficiency of the proposed method for emotion recognition. This approach proves to be robust and suitable for various practical applications. By addressing challenges posed by existing methods, the proposed method provides a valuable and effective solution for the field of Brain-Computer Interface (BCI).</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"31319"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682401/pdf/","citationCount":"0","resultStr":"{\"title\":\"EEG-based emotion recognition using multi-scale dynamic CNN and gated transformer.\",\"authors\":\"Zhuoling Cheng, Xuekui Bu, Qingnan Wang, Tao Yang, Jihui Tu\",\"doi\":\"10.1038/s41598-024-82705-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer. First, the Multi-Scale Dynamic CNN is used to extract complex spatial and spectral features from raw EEG signals, which not only avoids information loss but also reduces computational costs associated with the time-frequency conversion of signals. Then, the Gated Transformer Encoder is utilized to capture global dependencies of EEG signals. This encoder focuses on specific regions of the input sequence while reducing computational resources through parallel processing with the improved multi-head self-attention mechanisms. Third, the Temporal Convolution Network is used to extract temporal features from the EEG signals. Finally, the extracted abstract features are fed into a classification module for emotion recognition. The proposed method was evaluated on three publicly available datasets: DEAP, SEED, and SEED_IV. Experimental results demonstrate the high accuracy and efficiency of the proposed method for emotion recognition. This approach proves to be robust and suitable for various practical applications. By addressing challenges posed by existing methods, the proposed method provides a valuable and effective solution for the field of Brain-Computer Interface (BCI).</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"31319\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682401/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-82705-z\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82705-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

情绪在人类的思想、认知过程和决策中起着至关重要的作用。脑电图以其高时间分辨率、实时监测能力、便携性和成本效益等优点,已成为情感识别领域广泛应用的工具。本文提出了一种基于多尺度动态1D CNN和门控变压器的脑电信号端到端情感识别方法——MSDCGTNet。首先,利用多尺度动态CNN从原始脑电信号中提取复杂的空间和频谱特征,既避免了信息丢失,又降低了信号时频转换的计算成本;然后,利用门控变压器编码器捕获脑电信号的全局依赖关系。该编码器专注于输入序列的特定区域,同时通过改进的多头自注意机制并行处理,减少了计算资源。第三,利用时间卷积网络提取脑电信号的时间特征。最后,将提取的抽象特征输入分类模块进行情感识别。在三个公开可用的数据集:DEAP、SEED和SEED_IV上对所提出的方法进行了评估。实验结果表明,该方法具有较高的识别准确率和效率。该方法鲁棒性好,适用于各种实际应用。该方法解决了现有方法存在的问题,为脑机接口(BCI)领域提供了一种有价值和有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

EEG-based emotion recognition using multi-scale dynamic CNN and gated transformer.

EEG-based emotion recognition using multi-scale dynamic CNN and gated transformer.

EEG-based emotion recognition using multi-scale dynamic CNN and gated transformer.

EEG-based emotion recognition using multi-scale dynamic CNN and gated transformer.

Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer. First, the Multi-Scale Dynamic CNN is used to extract complex spatial and spectral features from raw EEG signals, which not only avoids information loss but also reduces computational costs associated with the time-frequency conversion of signals. Then, the Gated Transformer Encoder is utilized to capture global dependencies of EEG signals. This encoder focuses on specific regions of the input sequence while reducing computational resources through parallel processing with the improved multi-head self-attention mechanisms. Third, the Temporal Convolution Network is used to extract temporal features from the EEG signals. Finally, the extracted abstract features are fed into a classification module for emotion recognition. The proposed method was evaluated on three publicly available datasets: DEAP, SEED, and SEED_IV. Experimental results demonstrate the high accuracy and efficiency of the proposed method for emotion recognition. This approach proves to be robust and suitable for various practical applications. By addressing challenges posed by existing methods, the proposed method provides a valuable and effective solution for the field of Brain-Computer Interface (BCI).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信