基于深度学习的长白山北景区地质灾害应急疏散能力评估及提升策略研究

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Erzong Zheng, Yichen Zhang, Jiquan Zhang, Jiale Zhu, Jiahao Yan, Gexu Liu
{"title":"基于深度学习的长白山北景区地质灾害应急疏散能力评估及提升策略研究","authors":"Erzong Zheng, Yichen Zhang, Jiquan Zhang, Jiale Zhu, Jiahao Yan, Gexu Liu","doi":"10.1038/s41598-024-81583-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on the northern scenic area of Changbai Mountain, aiming to evaluate the emergency evacuation capacity of the region in the context of geological disasters and to formulate corresponding improvement strategies. Due to the relatively small area of this region, difficulties in data acquisition, and insufficient precision, traditional models for evaluating emergency evacuation capacity are typically applied to urban built environments, with relatively few studies addressing scenic areas. To tackle these issues, this research employs the Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN), which successfully resolves the problem of blurriness in remote sensing images and significantly enhances image clarity. Coupled with the Graph Convolutional Network (GCN) model, the study calculates the emergency evacuation time for each raster point, providing a comprehensive assessment of the region's evacuation capacity. Based on the evaluation results, the study proposes targeted improvement measures for areas identified as having poor emergency evacuation capacity, taking into account the existing infrastructure of the scenic area. By constructing an indicator system encompassing effectiveness, accessibility, and safety, the feasibility of each proposed enhancement strategy is assessed scientifically and rationally. Through these integrated tools and methodologies, this research significantly improves the accuracy of data processing, evaluation, and decision support, showcasing a comprehensive approach to scenic area research that provides critical support for geological disaster management, emergency planning, and the overall safety of the Changbai Mountain scenic area.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30849"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680839/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based study on assessment and enhancement strategy for geological disaster emergency evacuation capacity in Changbai Mountain North Scenic Area.\",\"authors\":\"Erzong Zheng, Yichen Zhang, Jiquan Zhang, Jiale Zhu, Jiahao Yan, Gexu Liu\",\"doi\":\"10.1038/s41598-024-81583-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study focuses on the northern scenic area of Changbai Mountain, aiming to evaluate the emergency evacuation capacity of the region in the context of geological disasters and to formulate corresponding improvement strategies. Due to the relatively small area of this region, difficulties in data acquisition, and insufficient precision, traditional models for evaluating emergency evacuation capacity are typically applied to urban built environments, with relatively few studies addressing scenic areas. To tackle these issues, this research employs the Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN), which successfully resolves the problem of blurriness in remote sensing images and significantly enhances image clarity. Coupled with the Graph Convolutional Network (GCN) model, the study calculates the emergency evacuation time for each raster point, providing a comprehensive assessment of the region's evacuation capacity. Based on the evaluation results, the study proposes targeted improvement measures for areas identified as having poor emergency evacuation capacity, taking into account the existing infrastructure of the scenic area. By constructing an indicator system encompassing effectiveness, accessibility, and safety, the feasibility of each proposed enhancement strategy is assessed scientifically and rationally. Through these integrated tools and methodologies, this research significantly improves the accuracy of data processing, evaluation, and decision support, showcasing a comprehensive approach to scenic area research that provides critical support for geological disaster management, emergency planning, and the overall safety of the Changbai Mountain scenic area.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"30849\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680839/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-81583-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-81583-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究以长白山北部风景名胜区为研究对象,旨在评估该区域在地质灾害背景下的应急疏散能力,并制定相应的改进策略。由于该区域面积较小,数据采集困难,精度不高,传统的应急疏散能力评估模型多应用于城市建成环境,针对景区的研究相对较少。为了解决这些问题,本研究采用Real-Enhanced超分辨率生成对抗网络(Real-ESRGAN),成功解决了遥感图像的模糊问题,显著提高了图像清晰度。结合图卷积网络(GCN)模型,计算每个栅格点的紧急疏散时间,对区域的疏散能力进行综合评估。根据评价结果,结合景区现有基础设施,针对应急疏散能力较差的区域,提出有针对性的改进措施。通过构建包括有效性、可及性和安全性在内的指标体系,科学合理地评价了各强化策略的可行性。通过这些集成的工具和方法,本研究显著提高了数据处理、评估和决策支持的准确性,展示了一种综合的景区研究方法,为长白山景区的地质灾害管理、应急规划和整体安全提供了重要支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based study on assessment and enhancement strategy for geological disaster emergency evacuation capacity in Changbai Mountain North Scenic Area.

This study focuses on the northern scenic area of Changbai Mountain, aiming to evaluate the emergency evacuation capacity of the region in the context of geological disasters and to formulate corresponding improvement strategies. Due to the relatively small area of this region, difficulties in data acquisition, and insufficient precision, traditional models for evaluating emergency evacuation capacity are typically applied to urban built environments, with relatively few studies addressing scenic areas. To tackle these issues, this research employs the Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN), which successfully resolves the problem of blurriness in remote sensing images and significantly enhances image clarity. Coupled with the Graph Convolutional Network (GCN) model, the study calculates the emergency evacuation time for each raster point, providing a comprehensive assessment of the region's evacuation capacity. Based on the evaluation results, the study proposes targeted improvement measures for areas identified as having poor emergency evacuation capacity, taking into account the existing infrastructure of the scenic area. By constructing an indicator system encompassing effectiveness, accessibility, and safety, the feasibility of each proposed enhancement strategy is assessed scientifically and rationally. Through these integrated tools and methodologies, this research significantly improves the accuracy of data processing, evaluation, and decision support, showcasing a comprehensive approach to scenic area research that provides critical support for geological disaster management, emergency planning, and the overall safety of the Changbai Mountain scenic area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信