{"title":"谷胱甘肽抑制剂eprenetapopt对SMARCA4-、SMARCB1-和pbrm1缺陷癌细胞中谷胱甘肽代谢脆弱性的影响","authors":"Mariko Sasaki, Hideaki Ogiwara","doi":"10.1038/s41598-024-82753-5","DOIUrl":null,"url":null,"abstract":"<p><p>Mutation of genes related to the SWI/SNF chromatin remodeling complex is detected in 20% of all cancers. The SWI/SNF chromatin remodeling complex comprises about 15 subunits and is classified into three subcomplexes: cBAF, PBAF, and ncBAF. Previously, we showed that ovarian clear cell carcinoma cells deficient in ARID1A, a subunit of the cBAF complex, are synthetic lethal with several genes required for glutathione (GSH) synthesis and are therefore sensitive to the GSH inhibitor eprenetapopt (APR-246). However, we do not know whether cancer cells deficient in SWI/SNF components other than ARID1A are selectively sensitive to treatment with eprenetapopt. Here, we show that SMARCA4-, SMARCB1-, and PBRM1-deficient cells are more sensitive to eprenetapopt than SWI/SNF-proficient cells. We found that deficiency of SMARCA4, SMARCB1, or PBRM1 attenuates transcription of the SLC7A11 gene (which supplies cysteine as a raw metabolic material for GSH synthesis) by the failure of recruitment of cBAF and PBAF to the promotor and enhancer regions of the SLC7A11 locus, thereby reducing basal levels of GSH. In addition, eprenetapopt decreased the amount of intracellular GSH and increased the intracellular amount of reactive oxygen species (ROS), followed by induction of apoptosis. Taken together, eprenetapopt could be a promising selective agent for SWI/SNF-deficient cancer cells derived from SMARCA4-deficient lung cancers, SMARCB1-deficient rhabdoid tumors, and PBRM1-deficient kidney cancers.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"31321"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682300/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficacy of glutathione inhibitor eprenetapopt against the vulnerability of glutathione metabolism in SMARCA4-, SMARCB1- and PBRM1-deficient cancer cells.\",\"authors\":\"Mariko Sasaki, Hideaki Ogiwara\",\"doi\":\"10.1038/s41598-024-82753-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutation of genes related to the SWI/SNF chromatin remodeling complex is detected in 20% of all cancers. The SWI/SNF chromatin remodeling complex comprises about 15 subunits and is classified into three subcomplexes: cBAF, PBAF, and ncBAF. Previously, we showed that ovarian clear cell carcinoma cells deficient in ARID1A, a subunit of the cBAF complex, are synthetic lethal with several genes required for glutathione (GSH) synthesis and are therefore sensitive to the GSH inhibitor eprenetapopt (APR-246). However, we do not know whether cancer cells deficient in SWI/SNF components other than ARID1A are selectively sensitive to treatment with eprenetapopt. Here, we show that SMARCA4-, SMARCB1-, and PBRM1-deficient cells are more sensitive to eprenetapopt than SWI/SNF-proficient cells. We found that deficiency of SMARCA4, SMARCB1, or PBRM1 attenuates transcription of the SLC7A11 gene (which supplies cysteine as a raw metabolic material for GSH synthesis) by the failure of recruitment of cBAF and PBAF to the promotor and enhancer regions of the SLC7A11 locus, thereby reducing basal levels of GSH. In addition, eprenetapopt decreased the amount of intracellular GSH and increased the intracellular amount of reactive oxygen species (ROS), followed by induction of apoptosis. Taken together, eprenetapopt could be a promising selective agent for SWI/SNF-deficient cancer cells derived from SMARCA4-deficient lung cancers, SMARCB1-deficient rhabdoid tumors, and PBRM1-deficient kidney cancers.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"31321\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682300/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-82753-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82753-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Efficacy of glutathione inhibitor eprenetapopt against the vulnerability of glutathione metabolism in SMARCA4-, SMARCB1- and PBRM1-deficient cancer cells.
Mutation of genes related to the SWI/SNF chromatin remodeling complex is detected in 20% of all cancers. The SWI/SNF chromatin remodeling complex comprises about 15 subunits and is classified into three subcomplexes: cBAF, PBAF, and ncBAF. Previously, we showed that ovarian clear cell carcinoma cells deficient in ARID1A, a subunit of the cBAF complex, are synthetic lethal with several genes required for glutathione (GSH) synthesis and are therefore sensitive to the GSH inhibitor eprenetapopt (APR-246). However, we do not know whether cancer cells deficient in SWI/SNF components other than ARID1A are selectively sensitive to treatment with eprenetapopt. Here, we show that SMARCA4-, SMARCB1-, and PBRM1-deficient cells are more sensitive to eprenetapopt than SWI/SNF-proficient cells. We found that deficiency of SMARCA4, SMARCB1, or PBRM1 attenuates transcription of the SLC7A11 gene (which supplies cysteine as a raw metabolic material for GSH synthesis) by the failure of recruitment of cBAF and PBAF to the promotor and enhancer regions of the SLC7A11 locus, thereby reducing basal levels of GSH. In addition, eprenetapopt decreased the amount of intracellular GSH and increased the intracellular amount of reactive oxygen species (ROS), followed by induction of apoptosis. Taken together, eprenetapopt could be a promising selective agent for SWI/SNF-deficient cancer cells derived from SMARCA4-deficient lung cancers, SMARCB1-deficient rhabdoid tumors, and PBRM1-deficient kidney cancers.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.