Jorge A Audino, Kyle E McElroy, Jeanne M Serb, José E A R Marian
{"title":"解剖和转录组学的共同叮当壳(双壳纲,Anomiidae)支持双壳触须的感觉功能。","authors":"Jorge A Audino, Kyle E McElroy, Jeanne M Serb, José E A R Marian","doi":"10.1038/s41598-024-83313-7","DOIUrl":null,"url":null,"abstract":"<p><p>Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology. Here, we gather multiple lines of evidence to explore the specialized sensory function of bivalve tentacles in the common jingle shell, Anomia simplex. In addition to applying microscopy techniques, we performed transcriptome sequencing of dissected tentacles using phylogenetically-informed annotation to identify candidate receptors. Our results demonstrate the expression of candidate GPCRs, including one opsin type, five small-molecule receptors, and 11 chemosensory-related receptors, supporting the involvement of sensory neurons in the organ, likely in association with the ciliated receptor cells observed along the tentacle surface. In addition, we identified seven ionotropic receptors as putative chemosensory receptors and one member of the Piezo mechanosensitive ion channel, which might be involved in touch sensation by ciliated sensory receptors. Our results provide the first evidence of putative sensory genes expressed in a bivalve sensory organ, representing an important starting point to investigate chemosensation in this class.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"31539"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682238/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anatomy and transcriptomics of the common jingle shell (Bivalvia, Anomiidae) support a sensory function for bivalve tentacles.\",\"authors\":\"Jorge A Audino, Kyle E McElroy, Jeanne M Serb, José E A R Marian\",\"doi\":\"10.1038/s41598-024-83313-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology. Here, we gather multiple lines of evidence to explore the specialized sensory function of bivalve tentacles in the common jingle shell, Anomia simplex. In addition to applying microscopy techniques, we performed transcriptome sequencing of dissected tentacles using phylogenetically-informed annotation to identify candidate receptors. Our results demonstrate the expression of candidate GPCRs, including one opsin type, five small-molecule receptors, and 11 chemosensory-related receptors, supporting the involvement of sensory neurons in the organ, likely in association with the ciliated receptor cells observed along the tentacle surface. In addition, we identified seven ionotropic receptors as putative chemosensory receptors and one member of the Piezo mechanosensitive ion channel, which might be involved in touch sensation by ciliated sensory receptors. Our results provide the first evidence of putative sensory genes expressed in a bivalve sensory organ, representing an important starting point to investigate chemosensation in this class.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"31539\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682238/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-83313-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-83313-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Anatomy and transcriptomics of the common jingle shell (Bivalvia, Anomiidae) support a sensory function for bivalve tentacles.
Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology. Here, we gather multiple lines of evidence to explore the specialized sensory function of bivalve tentacles in the common jingle shell, Anomia simplex. In addition to applying microscopy techniques, we performed transcriptome sequencing of dissected tentacles using phylogenetically-informed annotation to identify candidate receptors. Our results demonstrate the expression of candidate GPCRs, including one opsin type, five small-molecule receptors, and 11 chemosensory-related receptors, supporting the involvement of sensory neurons in the organ, likely in association with the ciliated receptor cells observed along the tentacle surface. In addition, we identified seven ionotropic receptors as putative chemosensory receptors and one member of the Piezo mechanosensitive ion channel, which might be involved in touch sensation by ciliated sensory receptors. Our results provide the first evidence of putative sensory genes expressed in a bivalve sensory organ, representing an important starting point to investigate chemosensation in this class.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.