Jibran Latif, Zhanliang Wang, Atif Jameel, Bilawal Ali, Muhammad Khawar Nadeem, Yubin Gong
{"title":"太赫兹辐射源的脊载交错双叶片慢波结构。","authors":"Jibran Latif, Zhanliang Wang, Atif Jameel, Bilawal Ali, Muhammad Khawar Nadeem, Yubin Gong","doi":"10.1038/s41598-024-82796-8","DOIUrl":null,"url":null,"abstract":"<p><p>A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure. The slow wave structure is fabricated and experimentally tested for transmission and reflection properties, revealing [Formula: see text] above -2 dB and [Formula: see text] below -17 dB at 0.34 THz for a backward wave oscillator. Steady transmission of the 21.7 kV sheet electron beam is achieved by designing a periodic cusped magnetic system (0.2 T) along with a sheet electron beam gun (50 mA). Beam-wave interaction simulations utilizing 100 periods demonstrate a peak power of 14 W and continuous frequency tuning from 0.295-0.375 THz for the proposed slow wave structure, whereas the staggered double-vane slow wave structure achieves 8.5 W peak power and frequency tuning from 0.308-0.366 THz. The sensitivity of the output power to the added ridge geometry is also analyzed. These findings indicate that the novel ridge-loaded staggered double vane slow-wave structure is promising for developing high-power broad frequency tunable terahertz radiation sources.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"31328"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682434/pdf/","citationCount":"0","resultStr":"{\"title\":\"A ridge-loaded staggered double-vane slow wave structure for terahertz radiation sources.\",\"authors\":\"Jibran Latif, Zhanliang Wang, Atif Jameel, Bilawal Ali, Muhammad Khawar Nadeem, Yubin Gong\",\"doi\":\"10.1038/s41598-024-82796-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure. The slow wave structure is fabricated and experimentally tested for transmission and reflection properties, revealing [Formula: see text] above -2 dB and [Formula: see text] below -17 dB at 0.34 THz for a backward wave oscillator. Steady transmission of the 21.7 kV sheet electron beam is achieved by designing a periodic cusped magnetic system (0.2 T) along with a sheet electron beam gun (50 mA). Beam-wave interaction simulations utilizing 100 periods demonstrate a peak power of 14 W and continuous frequency tuning from 0.295-0.375 THz for the proposed slow wave structure, whereas the staggered double-vane slow wave structure achieves 8.5 W peak power and frequency tuning from 0.308-0.366 THz. The sensitivity of the output power to the added ridge geometry is also analyzed. These findings indicate that the novel ridge-loaded staggered double vane slow-wave structure is promising for developing high-power broad frequency tunable terahertz radiation sources.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"31328\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682434/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-82796-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82796-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A ridge-loaded staggered double-vane slow wave structure for terahertz radiation sources.
A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure. The slow wave structure is fabricated and experimentally tested for transmission and reflection properties, revealing [Formula: see text] above -2 dB and [Formula: see text] below -17 dB at 0.34 THz for a backward wave oscillator. Steady transmission of the 21.7 kV sheet electron beam is achieved by designing a periodic cusped magnetic system (0.2 T) along with a sheet electron beam gun (50 mA). Beam-wave interaction simulations utilizing 100 periods demonstrate a peak power of 14 W and continuous frequency tuning from 0.295-0.375 THz for the proposed slow wave structure, whereas the staggered double-vane slow wave structure achieves 8.5 W peak power and frequency tuning from 0.308-0.366 THz. The sensitivity of the output power to the added ridge geometry is also analyzed. These findings indicate that the novel ridge-loaded staggered double vane slow-wave structure is promising for developing high-power broad frequency tunable terahertz radiation sources.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.