Chen Cheng, Xinxin Xue, Yunyun Jiao, Mengyu Du, Mengkai Zhang, Xiao Zeng, Jin-Bo Sun, Wei Qin, Hui Deng, Xue-Juan Yang
{"title":"耳垂刺激可以作为经皮耳迷走神经刺激的假手术吗?来自睡眠剥夺后的警觉性研究的证据。","authors":"Chen Cheng, Xinxin Xue, Yunyun Jiao, Mengyu Du, Mengkai Zhang, Xiao Zeng, Jin-Bo Sun, Wei Qin, Hui Deng, Xue-Juan Yang","doi":"10.1111/psyp.14744","DOIUrl":null,"url":null,"abstract":"<p><p>Transcutaneous auricular vagus nerve stimulation (taVNS) has garnered increasing attention as a safe and effective peripheral neuromodulation technique in various clinical and cognitive neuroscience fields. However, there is ongoing debate about whether the commonly used earlobe control interferes with the objective assessment of taVNS regulatory effects. This study aims to further explore the regulatory effects of taVNS and earlobe stimulation (ES) on alertness levels and physiological indicators following 24 h of sleep deprivation (SD), based on previous findings that both taVNS and ES showed significant positive effects. The goal is to evaluate whether ES can serve as a neutral sham condition. Using a within-subject randomized experimental design involving 56 participants, we assessed alertness, heart rate variability (HRV), and salivary alpha-amylase (sAA) levels in the morning of the first day. After 24 h of SD and 30 min of either taVNS or ES intervention, these indicators were re-evaluated, and the changes in both groups were analyzed. The results indicated that both taVNS and ES improved alertness levels following SD. However, taVNS significantly increased sAA levels, indicating activation of the LC-NE system, whereas ES significantly increased HR and reduced HRV, promoting sympathetic nervous activity. Additionally, the regulatory effect of taVNS on the alertness showed a higher correlation with SD impairment. Although taVNS and ES may involve different and separable neuromodulation mechanisms, both can enhance alertness following SD. Future studies should carefully consider the potential regulatory effects of ES when using it as a sham condition in taVNS research.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":"62 1","pages":"e14744"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can earlobe stimulation serve as a sham for transcutaneous auricular vagus stimulation? Evidence from an alertness study following sleep deprivation.\",\"authors\":\"Chen Cheng, Xinxin Xue, Yunyun Jiao, Mengyu Du, Mengkai Zhang, Xiao Zeng, Jin-Bo Sun, Wei Qin, Hui Deng, Xue-Juan Yang\",\"doi\":\"10.1111/psyp.14744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcutaneous auricular vagus nerve stimulation (taVNS) has garnered increasing attention as a safe and effective peripheral neuromodulation technique in various clinical and cognitive neuroscience fields. However, there is ongoing debate about whether the commonly used earlobe control interferes with the objective assessment of taVNS regulatory effects. This study aims to further explore the regulatory effects of taVNS and earlobe stimulation (ES) on alertness levels and physiological indicators following 24 h of sleep deprivation (SD), based on previous findings that both taVNS and ES showed significant positive effects. The goal is to evaluate whether ES can serve as a neutral sham condition. Using a within-subject randomized experimental design involving 56 participants, we assessed alertness, heart rate variability (HRV), and salivary alpha-amylase (sAA) levels in the morning of the first day. After 24 h of SD and 30 min of either taVNS or ES intervention, these indicators were re-evaluated, and the changes in both groups were analyzed. The results indicated that both taVNS and ES improved alertness levels following SD. However, taVNS significantly increased sAA levels, indicating activation of the LC-NE system, whereas ES significantly increased HR and reduced HRV, promoting sympathetic nervous activity. Additionally, the regulatory effect of taVNS on the alertness showed a higher correlation with SD impairment. Although taVNS and ES may involve different and separable neuromodulation mechanisms, both can enhance alertness following SD. Future studies should carefully consider the potential regulatory effects of ES when using it as a sham condition in taVNS research.</p>\",\"PeriodicalId\":20913,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":\"62 1\",\"pages\":\"e14744\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14744\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14744","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Can earlobe stimulation serve as a sham for transcutaneous auricular vagus stimulation? Evidence from an alertness study following sleep deprivation.
Transcutaneous auricular vagus nerve stimulation (taVNS) has garnered increasing attention as a safe and effective peripheral neuromodulation technique in various clinical and cognitive neuroscience fields. However, there is ongoing debate about whether the commonly used earlobe control interferes with the objective assessment of taVNS regulatory effects. This study aims to further explore the regulatory effects of taVNS and earlobe stimulation (ES) on alertness levels and physiological indicators following 24 h of sleep deprivation (SD), based on previous findings that both taVNS and ES showed significant positive effects. The goal is to evaluate whether ES can serve as a neutral sham condition. Using a within-subject randomized experimental design involving 56 participants, we assessed alertness, heart rate variability (HRV), and salivary alpha-amylase (sAA) levels in the morning of the first day. After 24 h of SD and 30 min of either taVNS or ES intervention, these indicators were re-evaluated, and the changes in both groups were analyzed. The results indicated that both taVNS and ES improved alertness levels following SD. However, taVNS significantly increased sAA levels, indicating activation of the LC-NE system, whereas ES significantly increased HR and reduced HRV, promoting sympathetic nervous activity. Additionally, the regulatory effect of taVNS on the alertness showed a higher correlation with SD impairment. Although taVNS and ES may involve different and separable neuromodulation mechanisms, both can enhance alertness following SD. Future studies should carefully consider the potential regulatory effects of ES when using it as a sham condition in taVNS research.
期刊介绍:
Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.