谷胱甘肽s -转移酶BnGSTU12通过活性氧稳态和茉莉酸信号传导增强甘蓝型油菜对菌核菌的抗性。

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
Jinxiong Xu, Huanhuan Jiang, Qing Cao, Yali Li, Xianjue Kuang, Yulun Wu, Yourong Chai, Jiana Li, Kun Lu, Lijuan Wei
{"title":"谷胱甘肽s -转移酶BnGSTU12通过活性氧稳态和茉莉酸信号传导增强甘蓝型油菜对菌核菌的抗性。","authors":"Jinxiong Xu, Huanhuan Jiang, Qing Cao, Yali Li, Xianjue Kuang, Yulun Wu, Yourong Chai, Jiana Li, Kun Lu, Lijuan Wei","doi":"10.1016/j.plaphy.2024.109446","DOIUrl":null,"url":null,"abstract":"<p><p>Sclerotinia sclerotiorum is a severe disease that affects rapeseed (Brassica napus), resulting in significant yield losses. In previous study, we identified the candidate GLUTATHIONE S-TRANSFERASE (GST) gene, BnGSTU12, associated with sclerotiorum stem resistance and the expression levels of BnGSTU12 in resistant lines were higher than that in susceptible lines. We analyzed the function of the BnGSTU12 during S. sclerotiorum infection in this study. BnGSTU12 expression was induced by S. sclerotiorum, with a strong increase 24 h after onset of infection. Transgenic functional analysis indicated that overexpression of BnGSTU12 in Arabidopsis thaliana and B. napus enhanced resistance to S. sclerotiorum, whereas BnGSTU12 silencing decreased S. sclerotiorum resistance. The inoculated BnGSTU12-OE A. thaliana and B. napus plants showed higher antioxidant enzyme activity and lower H<sub>2</sub>O<sub>2</sub> contents than the wild type. As BnGSTU12 was rapidly induced by the phytohormones salicylic acid (SA), ethylene, and methyl jasmonate (MeJA), we investigated the involvement of the JA and SA pathways in GSTU12-mediated S. sclerotiorum resistance. JA content was higher in infected BnGSTU12-OE plants than in the wild type, whereas their SA contents were comparable. In addition, the expression levels of JASMONATE RESISTANT (JAR) involved in JA-Ile biosynthesis and those of JA-responsive genes were higher, the expression of JAZ gene repressing JA signaling was less in OE plants than WT after 12 and 24 h inoculation with S. sclerotiorum. Our results show that BnGSTU12 enhances resistance to S. sclerotiorum through ROS homeostasis and JA signaling.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"109446"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The glutathione S-transferase BnGSTU12 enhances the resistance of Brassica napus to Sclerotinia sclerotiorum through reactive oxygen species homeostasis and jasmonic acid signaling.\",\"authors\":\"Jinxiong Xu, Huanhuan Jiang, Qing Cao, Yali Li, Xianjue Kuang, Yulun Wu, Yourong Chai, Jiana Li, Kun Lu, Lijuan Wei\",\"doi\":\"10.1016/j.plaphy.2024.109446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sclerotinia sclerotiorum is a severe disease that affects rapeseed (Brassica napus), resulting in significant yield losses. In previous study, we identified the candidate GLUTATHIONE S-TRANSFERASE (GST) gene, BnGSTU12, associated with sclerotiorum stem resistance and the expression levels of BnGSTU12 in resistant lines were higher than that in susceptible lines. We analyzed the function of the BnGSTU12 during S. sclerotiorum infection in this study. BnGSTU12 expression was induced by S. sclerotiorum, with a strong increase 24 h after onset of infection. Transgenic functional analysis indicated that overexpression of BnGSTU12 in Arabidopsis thaliana and B. napus enhanced resistance to S. sclerotiorum, whereas BnGSTU12 silencing decreased S. sclerotiorum resistance. The inoculated BnGSTU12-OE A. thaliana and B. napus plants showed higher antioxidant enzyme activity and lower H<sub>2</sub>O<sub>2</sub> contents than the wild type. As BnGSTU12 was rapidly induced by the phytohormones salicylic acid (SA), ethylene, and methyl jasmonate (MeJA), we investigated the involvement of the JA and SA pathways in GSTU12-mediated S. sclerotiorum resistance. JA content was higher in infected BnGSTU12-OE plants than in the wild type, whereas their SA contents were comparable. In addition, the expression levels of JASMONATE RESISTANT (JAR) involved in JA-Ile biosynthesis and those of JA-responsive genes were higher, the expression of JAZ gene repressing JA signaling was less in OE plants than WT after 12 and 24 h inoculation with S. sclerotiorum. Our results show that BnGSTU12 enhances resistance to S. sclerotiorum through ROS homeostasis and JA signaling.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"219 \",\"pages\":\"109446\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2024.109446\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109446","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

菌核病是一种影响油菜(芸苔)的严重病害,导致严重的产量损失。在之前的研究中,我们发现了与菌核茎抗性相关的候选谷胱甘肽s -转移酶(GST)基因BnGSTU12,并且BnGSTU12在抗性品系中的表达水平高于易感品系。本研究分析了BnGSTU12在菌核葡萄球菌感染过程中的功能。BnGSTU12在菌核菌诱导下表达,在感染24 h后显著升高。转基因功能分析表明,BnGSTU12在拟南芥和甘蓝型油菜中的过表达增强了对菌核病菌的抗性,而BnGSTU12的沉默则降低了对菌核病菌的抗性。与野生型相比,接种BnGSTU12-OE的拟南芥和甘蓝型油菜的抗氧化酶活性较高,H2O2含量较低。由于BnGSTU12能被水杨酸(SA)、乙烯和茉莉酸甲酯(MeJA)快速诱导,我们研究了JA和SA途径在gstu12介导的菌核病菌抗性中的作用。BnGSTU12-OE侵染植株的JA含量高于野生型,SA含量与野生型相当。此外,接种菌核菌12 h和24 h后,OE植株中参与JA- ile生物合成的JASMONATE抗性基因(JAR)和JA响应基因的表达量较高,而抑制JA信号的JAZ基因的表达量低于WT。我们的研究结果表明,BnGSTU12通过ROS稳态和JA信号传导增强对菌丝病的抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The glutathione S-transferase BnGSTU12 enhances the resistance of Brassica napus to Sclerotinia sclerotiorum through reactive oxygen species homeostasis and jasmonic acid signaling.

Sclerotinia sclerotiorum is a severe disease that affects rapeseed (Brassica napus), resulting in significant yield losses. In previous study, we identified the candidate GLUTATHIONE S-TRANSFERASE (GST) gene, BnGSTU12, associated with sclerotiorum stem resistance and the expression levels of BnGSTU12 in resistant lines were higher than that in susceptible lines. We analyzed the function of the BnGSTU12 during S. sclerotiorum infection in this study. BnGSTU12 expression was induced by S. sclerotiorum, with a strong increase 24 h after onset of infection. Transgenic functional analysis indicated that overexpression of BnGSTU12 in Arabidopsis thaliana and B. napus enhanced resistance to S. sclerotiorum, whereas BnGSTU12 silencing decreased S. sclerotiorum resistance. The inoculated BnGSTU12-OE A. thaliana and B. napus plants showed higher antioxidant enzyme activity and lower H2O2 contents than the wild type. As BnGSTU12 was rapidly induced by the phytohormones salicylic acid (SA), ethylene, and methyl jasmonate (MeJA), we investigated the involvement of the JA and SA pathways in GSTU12-mediated S. sclerotiorum resistance. JA content was higher in infected BnGSTU12-OE plants than in the wild type, whereas their SA contents were comparable. In addition, the expression levels of JASMONATE RESISTANT (JAR) involved in JA-Ile biosynthesis and those of JA-responsive genes were higher, the expression of JAZ gene repressing JA signaling was less in OE plants than WT after 12 and 24 h inoculation with S. sclerotiorum. Our results show that BnGSTU12 enhances resistance to S. sclerotiorum through ROS homeostasis and JA signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信