{"title":"谷胱甘肽s -转移酶BnGSTU12通过活性氧稳态和茉莉酸信号传导增强甘蓝型油菜对菌核菌的抗性。","authors":"Jinxiong Xu, Huanhuan Jiang, Qing Cao, Yali Li, Xianjue Kuang, Yulun Wu, Yourong Chai, Jiana Li, Kun Lu, Lijuan Wei","doi":"10.1016/j.plaphy.2024.109446","DOIUrl":null,"url":null,"abstract":"<p><p>Sclerotinia sclerotiorum is a severe disease that affects rapeseed (Brassica napus), resulting in significant yield losses. In previous study, we identified the candidate GLUTATHIONE S-TRANSFERASE (GST) gene, BnGSTU12, associated with sclerotiorum stem resistance and the expression levels of BnGSTU12 in resistant lines were higher than that in susceptible lines. We analyzed the function of the BnGSTU12 during S. sclerotiorum infection in this study. BnGSTU12 expression was induced by S. sclerotiorum, with a strong increase 24 h after onset of infection. Transgenic functional analysis indicated that overexpression of BnGSTU12 in Arabidopsis thaliana and B. napus enhanced resistance to S. sclerotiorum, whereas BnGSTU12 silencing decreased S. sclerotiorum resistance. The inoculated BnGSTU12-OE A. thaliana and B. napus plants showed higher antioxidant enzyme activity and lower H<sub>2</sub>O<sub>2</sub> contents than the wild type. As BnGSTU12 was rapidly induced by the phytohormones salicylic acid (SA), ethylene, and methyl jasmonate (MeJA), we investigated the involvement of the JA and SA pathways in GSTU12-mediated S. sclerotiorum resistance. JA content was higher in infected BnGSTU12-OE plants than in the wild type, whereas their SA contents were comparable. In addition, the expression levels of JASMONATE RESISTANT (JAR) involved in JA-Ile biosynthesis and those of JA-responsive genes were higher, the expression of JAZ gene repressing JA signaling was less in OE plants than WT after 12 and 24 h inoculation with S. sclerotiorum. Our results show that BnGSTU12 enhances resistance to S. sclerotiorum through ROS homeostasis and JA signaling.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"109446"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The glutathione S-transferase BnGSTU12 enhances the resistance of Brassica napus to Sclerotinia sclerotiorum through reactive oxygen species homeostasis and jasmonic acid signaling.\",\"authors\":\"Jinxiong Xu, Huanhuan Jiang, Qing Cao, Yali Li, Xianjue Kuang, Yulun Wu, Yourong Chai, Jiana Li, Kun Lu, Lijuan Wei\",\"doi\":\"10.1016/j.plaphy.2024.109446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sclerotinia sclerotiorum is a severe disease that affects rapeseed (Brassica napus), resulting in significant yield losses. In previous study, we identified the candidate GLUTATHIONE S-TRANSFERASE (GST) gene, BnGSTU12, associated with sclerotiorum stem resistance and the expression levels of BnGSTU12 in resistant lines were higher than that in susceptible lines. We analyzed the function of the BnGSTU12 during S. sclerotiorum infection in this study. BnGSTU12 expression was induced by S. sclerotiorum, with a strong increase 24 h after onset of infection. Transgenic functional analysis indicated that overexpression of BnGSTU12 in Arabidopsis thaliana and B. napus enhanced resistance to S. sclerotiorum, whereas BnGSTU12 silencing decreased S. sclerotiorum resistance. The inoculated BnGSTU12-OE A. thaliana and B. napus plants showed higher antioxidant enzyme activity and lower H<sub>2</sub>O<sub>2</sub> contents than the wild type. As BnGSTU12 was rapidly induced by the phytohormones salicylic acid (SA), ethylene, and methyl jasmonate (MeJA), we investigated the involvement of the JA and SA pathways in GSTU12-mediated S. sclerotiorum resistance. JA content was higher in infected BnGSTU12-OE plants than in the wild type, whereas their SA contents were comparable. In addition, the expression levels of JASMONATE RESISTANT (JAR) involved in JA-Ile biosynthesis and those of JA-responsive genes were higher, the expression of JAZ gene repressing JA signaling was less in OE plants than WT after 12 and 24 h inoculation with S. sclerotiorum. Our results show that BnGSTU12 enhances resistance to S. sclerotiorum through ROS homeostasis and JA signaling.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"219 \",\"pages\":\"109446\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2024.109446\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109446","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The glutathione S-transferase BnGSTU12 enhances the resistance of Brassica napus to Sclerotinia sclerotiorum through reactive oxygen species homeostasis and jasmonic acid signaling.
Sclerotinia sclerotiorum is a severe disease that affects rapeseed (Brassica napus), resulting in significant yield losses. In previous study, we identified the candidate GLUTATHIONE S-TRANSFERASE (GST) gene, BnGSTU12, associated with sclerotiorum stem resistance and the expression levels of BnGSTU12 in resistant lines were higher than that in susceptible lines. We analyzed the function of the BnGSTU12 during S. sclerotiorum infection in this study. BnGSTU12 expression was induced by S. sclerotiorum, with a strong increase 24 h after onset of infection. Transgenic functional analysis indicated that overexpression of BnGSTU12 in Arabidopsis thaliana and B. napus enhanced resistance to S. sclerotiorum, whereas BnGSTU12 silencing decreased S. sclerotiorum resistance. The inoculated BnGSTU12-OE A. thaliana and B. napus plants showed higher antioxidant enzyme activity and lower H2O2 contents than the wild type. As BnGSTU12 was rapidly induced by the phytohormones salicylic acid (SA), ethylene, and methyl jasmonate (MeJA), we investigated the involvement of the JA and SA pathways in GSTU12-mediated S. sclerotiorum resistance. JA content was higher in infected BnGSTU12-OE plants than in the wild type, whereas their SA contents were comparable. In addition, the expression levels of JASMONATE RESISTANT (JAR) involved in JA-Ile biosynthesis and those of JA-responsive genes were higher, the expression of JAZ gene repressing JA signaling was less in OE plants than WT after 12 and 24 h inoculation with S. sclerotiorum. Our results show that BnGSTU12 enhances resistance to S. sclerotiorum through ROS homeostasis and JA signaling.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.