构建mrna -甲基- mirna单样本网络,揭示月轨胁迫诱导水稻分子相互作用模式。

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
Yan Zhang, Xiaohui Du, Meng Zhang, Yeqing Sun
{"title":"构建mrna -甲基- mirna单样本网络,揭示月轨胁迫诱导水稻分子相互作用模式。","authors":"Yan Zhang, Xiaohui Du, Meng Zhang, Yeqing Sun","doi":"10.1016/j.plaphy.2024.109430","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the bio-effects during Moon exploration missions, we utilized the Chang'E 5 probe to carry the seeds of Oryza. Sativa L., which were later returned to Earth after 23 days in lunar orbit and planted in an artificial climate chamber. Compared to the control group, rice seeds that underwent spaceflight showed inhibited growth and development when planted on the ground. Then we collected samples and employed RNA sequencing (RNA-Seq) and whole-genome bisulfite sequencing (WGBS) in the tillering and heading stages of rice. To gain a comprehensive understanding of the dysregulation in molecular interaction patterns during Moon exploration, a bioinformatics pipeline based on mRNA-meth-miRNA Single-Sample Networks (SSNs) was developed. Specifically, we constructed four SSNs for each sample at the mRNA, DNA methylation (promoter and gene bodies), and miRNA levels. By combining with the Protein-Protein Interaction (PPI) network, SSNs can character individual-specific gene interaction patterns. Under spaceflight conditions, distinct interaction patterns emerge across various omics levels. However, the molecules driving changes at each omics level predominantly regulate consistent biological functions, such as metabolic processes, DNA damage and repair, cell cycle, developmental processes, etc. In the tillering stage, pathways such as ubiquitin mediated proteolysis, nucleotide excision repair, and nucleotide metabolism are significantly enriched. Moreover, we identified 18 genes that played key/hub roles in the dysregulation of multi-omics molecular interaction patterns, and observed their involvement in regulating the above biological processes. As aforementioned, our multi-omics SSNs method can reveal the molecular interaction patterns under deep space exploration.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"109430"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing mRNA-meth-miRNA single-sample networks to reveal the molecular interaction patterns induced by lunar orbital stressors in rice (Oryzasativa).\",\"authors\":\"Yan Zhang, Xiaohui Du, Meng Zhang, Yeqing Sun\",\"doi\":\"10.1016/j.plaphy.2024.109430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To explore the bio-effects during Moon exploration missions, we utilized the Chang'E 5 probe to carry the seeds of Oryza. Sativa L., which were later returned to Earth after 23 days in lunar orbit and planted in an artificial climate chamber. Compared to the control group, rice seeds that underwent spaceflight showed inhibited growth and development when planted on the ground. Then we collected samples and employed RNA sequencing (RNA-Seq) and whole-genome bisulfite sequencing (WGBS) in the tillering and heading stages of rice. To gain a comprehensive understanding of the dysregulation in molecular interaction patterns during Moon exploration, a bioinformatics pipeline based on mRNA-meth-miRNA Single-Sample Networks (SSNs) was developed. Specifically, we constructed four SSNs for each sample at the mRNA, DNA methylation (promoter and gene bodies), and miRNA levels. By combining with the Protein-Protein Interaction (PPI) network, SSNs can character individual-specific gene interaction patterns. Under spaceflight conditions, distinct interaction patterns emerge across various omics levels. However, the molecules driving changes at each omics level predominantly regulate consistent biological functions, such as metabolic processes, DNA damage and repair, cell cycle, developmental processes, etc. In the tillering stage, pathways such as ubiquitin mediated proteolysis, nucleotide excision repair, and nucleotide metabolism are significantly enriched. Moreover, we identified 18 genes that played key/hub roles in the dysregulation of multi-omics molecular interaction patterns, and observed their involvement in regulating the above biological processes. As aforementioned, our multi-omics SSNs method can reveal the molecular interaction patterns under deep space exploration.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"219 \",\"pages\":\"109430\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2024.109430\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109430","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为了探索月球探测任务中的生物效应,我们利用嫦娥五号探测器携带了稻谷种子。Sativa L.,这些植物在月球轨道上运行了23天后返回地球,并被种植在一个人工气候室内。与对照组相比,经过太空飞行的水稻种子在地面种植时表现出抑制生长和发育的现象。在水稻分蘖期和抽穗期进行了RNA测序(RNA- seq)和亚硫酸氢盐全基因组测序(WGBS)。为了全面了解月球探测过程中分子相互作用模式的失调,建立了基于mrna -甲基- mirna单样本网络(SSNs)的生物信息学管道。具体来说,我们在mRNA、DNA甲基化(启动子和基因体)和miRNA水平上为每个样本构建了四个ssn。通过与蛋白质-蛋白质相互作用(PPI)网络结合,ssn可以表征个体特异性基因相互作用模式。在航天条件下,不同组学水平出现了不同的相互作用模式。然而,在每个组学水平上驱动变化的分子主要调控一致的生物功能,如代谢过程、DNA损伤和修复、细胞周期、发育过程等。在分蘖阶段,泛素介导的蛋白水解、核苷酸切除修复和核苷酸代谢等途径显著富集。此外,我们确定了18个在多组学分子相互作用模式失调中起关键/枢纽作用的基因,并观察了它们参与调节上述生物过程。如前所述,我们的多组学ssn方法可以揭示深空探测下的分子相互作用模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing mRNA-meth-miRNA single-sample networks to reveal the molecular interaction patterns induced by lunar orbital stressors in rice (Oryzasativa).

To explore the bio-effects during Moon exploration missions, we utilized the Chang'E 5 probe to carry the seeds of Oryza. Sativa L., which were later returned to Earth after 23 days in lunar orbit and planted in an artificial climate chamber. Compared to the control group, rice seeds that underwent spaceflight showed inhibited growth and development when planted on the ground. Then we collected samples and employed RNA sequencing (RNA-Seq) and whole-genome bisulfite sequencing (WGBS) in the tillering and heading stages of rice. To gain a comprehensive understanding of the dysregulation in molecular interaction patterns during Moon exploration, a bioinformatics pipeline based on mRNA-meth-miRNA Single-Sample Networks (SSNs) was developed. Specifically, we constructed four SSNs for each sample at the mRNA, DNA methylation (promoter and gene bodies), and miRNA levels. By combining with the Protein-Protein Interaction (PPI) network, SSNs can character individual-specific gene interaction patterns. Under spaceflight conditions, distinct interaction patterns emerge across various omics levels. However, the molecules driving changes at each omics level predominantly regulate consistent biological functions, such as metabolic processes, DNA damage and repair, cell cycle, developmental processes, etc. In the tillering stage, pathways such as ubiquitin mediated proteolysis, nucleotide excision repair, and nucleotide metabolism are significantly enriched. Moreover, we identified 18 genes that played key/hub roles in the dysregulation of multi-omics molecular interaction patterns, and observed their involvement in regulating the above biological processes. As aforementioned, our multi-omics SSNs method can reveal the molecular interaction patterns under deep space exploration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信