{"title":"转录组学和代谢组学分析表明,SNAC4和SNAC9是番茄番茄灰霉病抗性的负调控因子。","authors":"Yijie Sun, Zhengyu Huang, Xiaoyang Zhao, Linxiang Qiao, Zhaohui Xue, Ruoyi Gao, Bo Peng, Caie Wu, Xiaohong Kou","doi":"10.1016/j.plaphy.2024.109447","DOIUrl":null,"url":null,"abstract":"<p><p>NAC (NAM, ATAF1/2 and CUC2) is a transcription factor which contributes to the response for both biotic and abiotic stresses. In this study, the regulatory effects and potential mechanisms of SNAC4/9 on resistance to Botrytis cinerea (B. cinerea) were investigated by the differences in physiological and biochemical indices as well as transcriptional and metabolic profiles between SNAC4/9 overexpressed (OE-SNAC4/9) and wild-type (WT) tomato fruit inoculated with B. cinerea. The results showed that OE-SNAC4/9 accelerated the infection to tomato fruit by B. cinerea. Specifically, OE-SNAC4/9 mediated the differential expression of genes related to defense signaling such as ROS, phytohormones (SA and JA) and MAPK cascade, and inhibited the activities of PAL, CHI and GLU. Additionally, SNAC4/9 altered the metabolic flux redirection in each branch pathway of phenylpropane metabolism by regulating the expression of 4CL, CHS1/2, FLS and F3H, with overexpression of SNAC4/9 leading to a decrease in the accumulation of rutin, quercetin, naringenin chalcone and naringenin in tomato fruit. In conclusion, SNAC4/9 may inhibit tomato fruit resistance to B. cinerea by modulating signaling, inhibiting PRs (pathogenesis related proteins) synthesis, and altering metabolic flux flow.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"109447"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined analysis of transcriptomics and metabolomics showed that SNAC4 and SNAC9 are negative regulators of the resistance to Botrytis cinerea in tomato.\",\"authors\":\"Yijie Sun, Zhengyu Huang, Xiaoyang Zhao, Linxiang Qiao, Zhaohui Xue, Ruoyi Gao, Bo Peng, Caie Wu, Xiaohong Kou\",\"doi\":\"10.1016/j.plaphy.2024.109447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>NAC (NAM, ATAF1/2 and CUC2) is a transcription factor which contributes to the response for both biotic and abiotic stresses. In this study, the regulatory effects and potential mechanisms of SNAC4/9 on resistance to Botrytis cinerea (B. cinerea) were investigated by the differences in physiological and biochemical indices as well as transcriptional and metabolic profiles between SNAC4/9 overexpressed (OE-SNAC4/9) and wild-type (WT) tomato fruit inoculated with B. cinerea. The results showed that OE-SNAC4/9 accelerated the infection to tomato fruit by B. cinerea. Specifically, OE-SNAC4/9 mediated the differential expression of genes related to defense signaling such as ROS, phytohormones (SA and JA) and MAPK cascade, and inhibited the activities of PAL, CHI and GLU. Additionally, SNAC4/9 altered the metabolic flux redirection in each branch pathway of phenylpropane metabolism by regulating the expression of 4CL, CHS1/2, FLS and F3H, with overexpression of SNAC4/9 leading to a decrease in the accumulation of rutin, quercetin, naringenin chalcone and naringenin in tomato fruit. In conclusion, SNAC4/9 may inhibit tomato fruit resistance to B. cinerea by modulating signaling, inhibiting PRs (pathogenesis related proteins) synthesis, and altering metabolic flux flow.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"219 \",\"pages\":\"109447\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2024.109447\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109447","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Combined analysis of transcriptomics and metabolomics showed that SNAC4 and SNAC9 are negative regulators of the resistance to Botrytis cinerea in tomato.
NAC (NAM, ATAF1/2 and CUC2) is a transcription factor which contributes to the response for both biotic and abiotic stresses. In this study, the regulatory effects and potential mechanisms of SNAC4/9 on resistance to Botrytis cinerea (B. cinerea) were investigated by the differences in physiological and biochemical indices as well as transcriptional and metabolic profiles between SNAC4/9 overexpressed (OE-SNAC4/9) and wild-type (WT) tomato fruit inoculated with B. cinerea. The results showed that OE-SNAC4/9 accelerated the infection to tomato fruit by B. cinerea. Specifically, OE-SNAC4/9 mediated the differential expression of genes related to defense signaling such as ROS, phytohormones (SA and JA) and MAPK cascade, and inhibited the activities of PAL, CHI and GLU. Additionally, SNAC4/9 altered the metabolic flux redirection in each branch pathway of phenylpropane metabolism by regulating the expression of 4CL, CHS1/2, FLS and F3H, with overexpression of SNAC4/9 leading to a decrease in the accumulation of rutin, quercetin, naringenin chalcone and naringenin in tomato fruit. In conclusion, SNAC4/9 may inhibit tomato fruit resistance to B. cinerea by modulating signaling, inhibiting PRs (pathogenesis related proteins) synthesis, and altering metabolic flux flow.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.