Ziya Shabab, Piyush Wamanrao Ghoshe, Dronamraju V L Sarada
{"title":"砷酸盐胁迫下水稻纤维素合成酶蛋白(CesA)的结构和功能特征及油菜素内酯信号调控","authors":"Ziya Shabab, Piyush Wamanrao Ghoshe, Dronamraju V L Sarada","doi":"10.1007/s00299-024-03406-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat. Cellulose synthase and cellulose synthase-like (CesA/CSL) gene family build major constituent of cell wall polysaccharides, however, their interaction and responses to arsenic stress remains enigmatic. The current study describes the structural, functional, and regulatory behavior of CesA proteins using in silico tools with datasets of 367 sequences and an in vitro germination model. Interpro analysis revealed six types of domains, further classified into two major clades: cellulose synthase and glycosyl transferase family group 2 exhibiting polyphyletic grouping. The MEME suite analysis identified the frequent occurrence of \"QXXRW\" among 35 identified conserved motifs. Further observation of the regulatory mechanism of CesA identified 36 types of trans-regulatory elements involved in hormone signaling, developmental regulation, stress response, etc. Among these, hormone signaling comprises of 7 types of elements, with BES1 being less studied, sequences containing BES1 sites were selected. Additionally, 56 cis-regulatory elements were identified. Arsenate exposure increased transcript level of CesA and BES1/BZR1 compared to control. Western blot analysis revealed a significant downregulation of the BZR1 protein expression in arsenate stressed seedlings. This research shed light on the regulation of CesA mediated by (BES1/BZR1) and brassinosteroid signalling.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 1","pages":"15"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and functional characterization of cellulose synthase proteins (CesA) in rice and their regulation via brassinosteroid signaling under arsenate stress.\",\"authors\":\"Ziya Shabab, Piyush Wamanrao Ghoshe, Dronamraju V L Sarada\",\"doi\":\"10.1007/s00299-024-03406-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat. Cellulose synthase and cellulose synthase-like (CesA/CSL) gene family build major constituent of cell wall polysaccharides, however, their interaction and responses to arsenic stress remains enigmatic. The current study describes the structural, functional, and regulatory behavior of CesA proteins using in silico tools with datasets of 367 sequences and an in vitro germination model. Interpro analysis revealed six types of domains, further classified into two major clades: cellulose synthase and glycosyl transferase family group 2 exhibiting polyphyletic grouping. The MEME suite analysis identified the frequent occurrence of \\\"QXXRW\\\" among 35 identified conserved motifs. Further observation of the regulatory mechanism of CesA identified 36 types of trans-regulatory elements involved in hormone signaling, developmental regulation, stress response, etc. Among these, hormone signaling comprises of 7 types of elements, with BES1 being less studied, sequences containing BES1 sites were selected. Additionally, 56 cis-regulatory elements were identified. Arsenate exposure increased transcript level of CesA and BES1/BZR1 compared to control. Western blot analysis revealed a significant downregulation of the BZR1 protein expression in arsenate stressed seedlings. This research shed light on the regulation of CesA mediated by (BES1/BZR1) and brassinosteroid signalling.</p>\",\"PeriodicalId\":20204,\"journal\":{\"name\":\"Plant Cell Reports\",\"volume\":\"44 1\",\"pages\":\"15\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00299-024-03406-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03406-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Structural and functional characterization of cellulose synthase proteins (CesA) in rice and their regulation via brassinosteroid signaling under arsenate stress.
Key message: CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat. Cellulose synthase and cellulose synthase-like (CesA/CSL) gene family build major constituent of cell wall polysaccharides, however, their interaction and responses to arsenic stress remains enigmatic. The current study describes the structural, functional, and regulatory behavior of CesA proteins using in silico tools with datasets of 367 sequences and an in vitro germination model. Interpro analysis revealed six types of domains, further classified into two major clades: cellulose synthase and glycosyl transferase family group 2 exhibiting polyphyletic grouping. The MEME suite analysis identified the frequent occurrence of "QXXRW" among 35 identified conserved motifs. Further observation of the regulatory mechanism of CesA identified 36 types of trans-regulatory elements involved in hormone signaling, developmental regulation, stress response, etc. Among these, hormone signaling comprises of 7 types of elements, with BES1 being less studied, sequences containing BES1 sites were selected. Additionally, 56 cis-regulatory elements were identified. Arsenate exposure increased transcript level of CesA and BES1/BZR1 compared to control. Western blot analysis revealed a significant downregulation of the BZR1 protein expression in arsenate stressed seedlings. This research shed light on the regulation of CesA mediated by (BES1/BZR1) and brassinosteroid signalling.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.