Steven L Matzner, Emily R Konz, Samantha A Marts, Haley M Eversman, Kyla M Kasuske, Trinity L Atkins, Sneha Acharya, Lara C Matuck, Lillian M Derynck, Sydney Kreutzmann, Avery G Selberg, Kelli M Glisar, Sydney A Capers, Victoria L Lind, Sarah Olimb, Carrie F Olson-Manning
{"title":"在干旱避免的差异,而不是在快与慢生长谱的差异解释两种Asclepias分布。","authors":"Steven L Matzner, Emily R Konz, Samantha A Marts, Haley M Eversman, Kyla M Kasuske, Trinity L Atkins, Sneha Acharya, Lara C Matuck, Lillian M Derynck, Sydney Kreutzmann, Avery G Selberg, Kelli M Glisar, Sydney A Capers, Victoria L Lind, Sarah Olimb, Carrie F Olson-Manning","doi":"10.1111/ppl.70034","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding factors that determine a species' geographical range is crucial for predicting climate-induced range shifts. Two milkweed species, Asclepias syriaca and Asclepias speciosa, have overlapping ranges along a moisture gradient in North America and are primary food sources for endangered monarch caterpillars. With decreasing moisture, long-lived species often exhibit slower growth and greater drought tolerance, while many annual species exhibit faster growth strategies. Using this fast-slow framework, we assessed whether traits of these two sister species differ along a fast-slow growth continuum and could explain their distributions. We measured leaf and root functional traits in common gardens and greenhouse experiments. In key measures indicative of drought tolerance (e.g., growth, transpiration, and water potentials), the species were nearly identical. Contrary to expectations, A. speciosa did not exhibit greater drought tolerance, raising the question of how it survives in the more arid west. A reciprocal transplant study showed selection against A. syriaca in the western garden and that A. speciosa was better able to avoid seedling mortality. Focusing on seedling establishment, we found that A. speciosa exhibited faster deep-root development and a narrow leaf phenotype associated with slower wilting and delayed drought-induced mortality. Rather than differences on the fast-slow growth spectrum, our results indicate that A. speciosa avoids drought through faster deep-root growth and a slower wilting phenotype. Our study suggests that A. syriaca's range is limited by its drought tolerance, while A. speciosa employs a number of drought avoidance strategies to survive in more arid environments.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70034"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800957/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differences in drought avoidance rather than differences in the fast versus slow growth spectrum explain distributions of two Asclepias species.\",\"authors\":\"Steven L Matzner, Emily R Konz, Samantha A Marts, Haley M Eversman, Kyla M Kasuske, Trinity L Atkins, Sneha Acharya, Lara C Matuck, Lillian M Derynck, Sydney Kreutzmann, Avery G Selberg, Kelli M Glisar, Sydney A Capers, Victoria L Lind, Sarah Olimb, Carrie F Olson-Manning\",\"doi\":\"10.1111/ppl.70034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding factors that determine a species' geographical range is crucial for predicting climate-induced range shifts. Two milkweed species, Asclepias syriaca and Asclepias speciosa, have overlapping ranges along a moisture gradient in North America and are primary food sources for endangered monarch caterpillars. With decreasing moisture, long-lived species often exhibit slower growth and greater drought tolerance, while many annual species exhibit faster growth strategies. Using this fast-slow framework, we assessed whether traits of these two sister species differ along a fast-slow growth continuum and could explain their distributions. We measured leaf and root functional traits in common gardens and greenhouse experiments. In key measures indicative of drought tolerance (e.g., growth, transpiration, and water potentials), the species were nearly identical. Contrary to expectations, A. speciosa did not exhibit greater drought tolerance, raising the question of how it survives in the more arid west. A reciprocal transplant study showed selection against A. syriaca in the western garden and that A. speciosa was better able to avoid seedling mortality. Focusing on seedling establishment, we found that A. speciosa exhibited faster deep-root development and a narrow leaf phenotype associated with slower wilting and delayed drought-induced mortality. Rather than differences on the fast-slow growth spectrum, our results indicate that A. speciosa avoids drought through faster deep-root growth and a slower wilting phenotype. Our study suggests that A. syriaca's range is limited by its drought tolerance, while A. speciosa employs a number of drought avoidance strategies to survive in more arid environments.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 1\",\"pages\":\"e70034\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800957/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70034\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70034","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Differences in drought avoidance rather than differences in the fast versus slow growth spectrum explain distributions of two Asclepias species.
Understanding factors that determine a species' geographical range is crucial for predicting climate-induced range shifts. Two milkweed species, Asclepias syriaca and Asclepias speciosa, have overlapping ranges along a moisture gradient in North America and are primary food sources for endangered monarch caterpillars. With decreasing moisture, long-lived species often exhibit slower growth and greater drought tolerance, while many annual species exhibit faster growth strategies. Using this fast-slow framework, we assessed whether traits of these two sister species differ along a fast-slow growth continuum and could explain their distributions. We measured leaf and root functional traits in common gardens and greenhouse experiments. In key measures indicative of drought tolerance (e.g., growth, transpiration, and water potentials), the species were nearly identical. Contrary to expectations, A. speciosa did not exhibit greater drought tolerance, raising the question of how it survives in the more arid west. A reciprocal transplant study showed selection against A. syriaca in the western garden and that A. speciosa was better able to avoid seedling mortality. Focusing on seedling establishment, we found that A. speciosa exhibited faster deep-root development and a narrow leaf phenotype associated with slower wilting and delayed drought-induced mortality. Rather than differences on the fast-slow growth spectrum, our results indicate that A. speciosa avoids drought through faster deep-root growth and a slower wilting phenotype. Our study suggests that A. syriaca's range is limited by its drought tolerance, while A. speciosa employs a number of drought avoidance strategies to survive in more arid environments.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.