细胞分裂素的结构-功能关系决定了它们介导烟草对丁香假单胞菌抗性的差异效率。

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Dominik K Großkinsky, Eva M Molin, Federico Bosetto, Kerstin Edelsbrunner, Michal Oravec, Kristýna Večeřová, Jan Tříska, Thomas Roitsch
{"title":"细胞分裂素的结构-功能关系决定了它们介导烟草对丁香假单胞菌抗性的差异效率。","authors":"Dominik K Großkinsky, Eva M Molin, Federico Bosetto, Kerstin Edelsbrunner, Michal Oravec, Kristýna Večeřová, Jan Tříska, Thomas Roitsch","doi":"10.1111/ppl.70028","DOIUrl":null,"url":null,"abstract":"<p><p>The classic plant growth-promoting phytohormone cytokinin has been identified and established as a mediator of pathogen resistance in different plant species. However, the resistance effect of structurally different cytokinins appears to vary and may regulate diverse mechanisms to establish resistance. Hence, we comparatively analysed the impact of six different adenine- and phenylurea-type cytokinins on the well-established pathosystem Nicotiana tabacum-Pseudomonas syringae. The efficiency of resistance effects was evaluated based on impacts on the host plant defence response by scoring infection symptoms and the direct impact on the pathogen by assessment of proliferation in planta. To identify common and cytokinin-specific components involved in resistance effects, transcriptome profiling and targeted metabolomics were conducted in leaves treated with the different cytokinins. We observed clearly different potentials of the tested cytokinins in either suppressing infection symptoms or pathogen proliferation. Gene regulation and metabolite analyses revealed cytokinin-type specific impacts on defence components, such as salicylic acid and related signalling, expression of PR proteins, and regulation of specialised metabolism. Cytokinins also strongly affected plant cell physiological parameters, such as a remarkable decrease in amino acid pools. Hence, this study provides comparative information on the efficiency of diverse cytokinins in mediating resistance in one well-studied pathosystem and insights into the specific regulation of resistance effects mediated by different cytokinin molecules. This is particularly relevant for studies on the function of cytokinins or other phytohormones and compounds interacting with cytokinin activities in the context of pathogen infections and other stress scenarios, considering the diverse cytokinins present in plants.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70028"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672182/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structure-function relation of cytokinins determines their differential efficiency in mediating tobacco resistance against Pseudomonas syringae.\",\"authors\":\"Dominik K Großkinsky, Eva M Molin, Federico Bosetto, Kerstin Edelsbrunner, Michal Oravec, Kristýna Večeřová, Jan Tříska, Thomas Roitsch\",\"doi\":\"10.1111/ppl.70028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The classic plant growth-promoting phytohormone cytokinin has been identified and established as a mediator of pathogen resistance in different plant species. However, the resistance effect of structurally different cytokinins appears to vary and may regulate diverse mechanisms to establish resistance. Hence, we comparatively analysed the impact of six different adenine- and phenylurea-type cytokinins on the well-established pathosystem Nicotiana tabacum-Pseudomonas syringae. The efficiency of resistance effects was evaluated based on impacts on the host plant defence response by scoring infection symptoms and the direct impact on the pathogen by assessment of proliferation in planta. To identify common and cytokinin-specific components involved in resistance effects, transcriptome profiling and targeted metabolomics were conducted in leaves treated with the different cytokinins. We observed clearly different potentials of the tested cytokinins in either suppressing infection symptoms or pathogen proliferation. Gene regulation and metabolite analyses revealed cytokinin-type specific impacts on defence components, such as salicylic acid and related signalling, expression of PR proteins, and regulation of specialised metabolism. Cytokinins also strongly affected plant cell physiological parameters, such as a remarkable decrease in amino acid pools. Hence, this study provides comparative information on the efficiency of diverse cytokinins in mediating resistance in one well-studied pathosystem and insights into the specific regulation of resistance effects mediated by different cytokinin molecules. This is particularly relevant for studies on the function of cytokinins or other phytohormones and compounds interacting with cytokinin activities in the context of pathogen infections and other stress scenarios, considering the diverse cytokinins present in plants.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 1\",\"pages\":\"e70028\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672182/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70028\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70028","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

经典的促进植物生长的植物激素细胞分裂素已被确定并确立为不同植物物种的病原体抗性中介。然而,结构不同的细胞分裂素的抗性效果似乎不同,并可能调节不同的机制来建立抗性。因此,我们比较分析了六种不同的腺嘌呤型和苯脲型细胞分裂素对烟草-丁香假单胞菌的既定病理系统的影响。通过侵染症状评分对寄主植物防御反应的影响和通过植物增殖评估对病原菌的直接影响来评估抗性效果的有效性。为了鉴定参与抗性效应的共同成分和细胞分裂素特异性成分,对不同细胞分裂素处理的叶片进行了转录组分析和靶向代谢组学研究。我们清楚地观察到细胞分裂素在抑制感染症状或病原体增殖方面的不同潜力。基因调控和代谢物分析揭示了细胞分裂素类型对防御成分的特异性影响,如水杨酸和相关信号,PR蛋白的表达和特殊代谢的调节。细胞分裂素还强烈影响植物细胞的生理参数,如氨基酸库的显著减少。因此,本研究提供了不同细胞分裂素在一个已被充分研究的病理系统中介导耐药效率的比较信息,并深入了解了不同细胞分裂素分子介导的耐药效应的具体调控。考虑到植物中存在多种细胞分裂素,这对于研究细胞分裂素或其他植物激素和化合物在病原体感染和其他胁迫情景下与细胞分裂素活性相互作用的功能尤其重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-function relation of cytokinins determines their differential efficiency in mediating tobacco resistance against Pseudomonas syringae.

The classic plant growth-promoting phytohormone cytokinin has been identified and established as a mediator of pathogen resistance in different plant species. However, the resistance effect of structurally different cytokinins appears to vary and may regulate diverse mechanisms to establish resistance. Hence, we comparatively analysed the impact of six different adenine- and phenylurea-type cytokinins on the well-established pathosystem Nicotiana tabacum-Pseudomonas syringae. The efficiency of resistance effects was evaluated based on impacts on the host plant defence response by scoring infection symptoms and the direct impact on the pathogen by assessment of proliferation in planta. To identify common and cytokinin-specific components involved in resistance effects, transcriptome profiling and targeted metabolomics were conducted in leaves treated with the different cytokinins. We observed clearly different potentials of the tested cytokinins in either suppressing infection symptoms or pathogen proliferation. Gene regulation and metabolite analyses revealed cytokinin-type specific impacts on defence components, such as salicylic acid and related signalling, expression of PR proteins, and regulation of specialised metabolism. Cytokinins also strongly affected plant cell physiological parameters, such as a remarkable decrease in amino acid pools. Hence, this study provides comparative information on the efficiency of diverse cytokinins in mediating resistance in one well-studied pathosystem and insights into the specific regulation of resistance effects mediated by different cytokinin molecules. This is particularly relevant for studies on the function of cytokinins or other phytohormones and compounds interacting with cytokinin activities in the context of pathogen infections and other stress scenarios, considering the diverse cytokinins present in plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信