利用溅射铌酸钾钠的高声压压电微机械超声换能器。

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Fan Xia, Yande Peng, Wei Yue, Mingze Luo, Megan Teng, Chun-Ming Chen, Sedat Pala, Xiaoyang Yu, Yuanzheng Ma, Megha Acharya, Ryuichi Arakawa, Lane W Martin, Liwei Lin
{"title":"利用溅射铌酸钾钠的高声压压电微机械超声换能器。","authors":"Fan Xia, Yande Peng, Wei Yue, Mingze Luo, Megan Teng, Chun-Ming Chen, Sedat Pala, Xiaoyang Yu, Yuanzheng Ma, Megha Acharya, Ryuichi Arakawa, Lane W Martin, Liwei Lin","doi":"10.1038/s41378-024-00841-y","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents air-coupled piezoelectric micromachined ultrasonic transducers (pMUTs) with high sound pressure level (SPL) under low-driving voltages by utilizing sputtered potassium sodium niobate K<sub>0.34</sub>Na<sub>0.66</sub>NbO<sub>3</sub> (KNN) films. A prototype single KNN pMUT has been tested to show a resonant frequency at 106.3 kHz under 4 V<sub>p-p</sub> with outstanding characteristics: (1) a large vibration amplitude of 3.74 μm/V, and (2) a high acoustic root mean square (RMS) sound pressure level of 105.5 dB/V at 10 cm, which is 5-10 times higher than those of AlN-based pMUTs at a similar frequency. There are various potential sensing and actuating applications, such as fingerprint sensing, touch point, and gesture recognition. In this work, we present demonstrations in three fields: haptics, loudspeakers, and rangefinders. For haptics, an array of 15 × 15 KNN pMUTs is used as a non-contact actuator to provide a focal pressure of around 160.3 dB RMS SPL at a distance of 15 mm. This represents the highest output pressure achieved by an airborne pMUT for haptic sensation on human palms. When used as a loudspeaker, a single pMUT element with a resonant frequency close to the audible range at 22.8 kHz is characterized. It is shown to be able to generate a uniform acoustic output with an amplitude modulation scheme. In the rangefinder application, pulse-echo measurements using a single pMUT element demonstrate good transceiving results, capable of detecting objects up to 2.82 m away. As such, this new class of high-SPL and low-driving-voltage pMUTs could be further extended to other applications requiring high acoustic pressure and a small form factor.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"205"},"PeriodicalIF":7.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671594/pdf/","citationCount":"0","resultStr":"{\"title\":\"High sound pressure piezoelectric micromachined ultrasonic transducers using sputtered potassium sodium niobate.\",\"authors\":\"Fan Xia, Yande Peng, Wei Yue, Mingze Luo, Megan Teng, Chun-Ming Chen, Sedat Pala, Xiaoyang Yu, Yuanzheng Ma, Megha Acharya, Ryuichi Arakawa, Lane W Martin, Liwei Lin\",\"doi\":\"10.1038/s41378-024-00841-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work presents air-coupled piezoelectric micromachined ultrasonic transducers (pMUTs) with high sound pressure level (SPL) under low-driving voltages by utilizing sputtered potassium sodium niobate K<sub>0.34</sub>Na<sub>0.66</sub>NbO<sub>3</sub> (KNN) films. A prototype single KNN pMUT has been tested to show a resonant frequency at 106.3 kHz under 4 V<sub>p-p</sub> with outstanding characteristics: (1) a large vibration amplitude of 3.74 μm/V, and (2) a high acoustic root mean square (RMS) sound pressure level of 105.5 dB/V at 10 cm, which is 5-10 times higher than those of AlN-based pMUTs at a similar frequency. There are various potential sensing and actuating applications, such as fingerprint sensing, touch point, and gesture recognition. In this work, we present demonstrations in three fields: haptics, loudspeakers, and rangefinders. For haptics, an array of 15 × 15 KNN pMUTs is used as a non-contact actuator to provide a focal pressure of around 160.3 dB RMS SPL at a distance of 15 mm. This represents the highest output pressure achieved by an airborne pMUT for haptic sensation on human palms. When used as a loudspeaker, a single pMUT element with a resonant frequency close to the audible range at 22.8 kHz is characterized. It is shown to be able to generate a uniform acoustic output with an amplitude modulation scheme. In the rangefinder application, pulse-echo measurements using a single pMUT element demonstrate good transceiving results, capable of detecting objects up to 2.82 m away. As such, this new class of high-SPL and low-driving-voltage pMUTs could be further extended to other applications requiring high acoustic pressure and a small form factor.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 1\",\"pages\":\"205\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671594/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00841-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00841-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

利用溅射铌酸钾钠K0.34Na0.66NbO3 (KNN)薄膜制备了低驱动电压下的高声压级空气耦合压电微机械超声换能器(pMUTs)。在4 Vp-p条件下,单KNN pMUT的谐振频率为106.3 kHz,具有以下特点:(1)振动幅值高达3.74 μm/V; (2) 10 cm处的声均方根(RMS)声压级高达105.5 dB/V,是同类频率下基于aln的pMUT的5-10倍。有各种潜在的传感和驱动应用,如指纹传感、触摸点和手势识别。在这项工作中,我们展示了三个领域的演示:触觉、扬声器和测距仪。对于触觉,15 × 15 KNN pMUTs阵列用作非接触式致动器,在15 mm距离处提供约160.3 dB RMS SPL的焦压力。这代表了空气pMUT对人类手掌触觉所达到的最高输出压力。当用作扬声器时,单个pMUT元件的谐振频率接近22.8 kHz的可听范围。它被证明能够产生一个均匀的声学输出与调幅方案。在测距仪应用中,使用单个pMUT元件的脉冲回波测量显示出良好的收发效果,能够检测到2.82米远的物体。因此,这种新型的高声压级和低驱动电压pmut可以进一步扩展到其他需要高声压和小尺寸的应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High sound pressure piezoelectric micromachined ultrasonic transducers using sputtered potassium sodium niobate.

This work presents air-coupled piezoelectric micromachined ultrasonic transducers (pMUTs) with high sound pressure level (SPL) under low-driving voltages by utilizing sputtered potassium sodium niobate K0.34Na0.66NbO3 (KNN) films. A prototype single KNN pMUT has been tested to show a resonant frequency at 106.3 kHz under 4 Vp-p with outstanding characteristics: (1) a large vibration amplitude of 3.74 μm/V, and (2) a high acoustic root mean square (RMS) sound pressure level of 105.5 dB/V at 10 cm, which is 5-10 times higher than those of AlN-based pMUTs at a similar frequency. There are various potential sensing and actuating applications, such as fingerprint sensing, touch point, and gesture recognition. In this work, we present demonstrations in three fields: haptics, loudspeakers, and rangefinders. For haptics, an array of 15 × 15 KNN pMUTs is used as a non-contact actuator to provide a focal pressure of around 160.3 dB RMS SPL at a distance of 15 mm. This represents the highest output pressure achieved by an airborne pMUT for haptic sensation on human palms. When used as a loudspeaker, a single pMUT element with a resonant frequency close to the audible range at 22.8 kHz is characterized. It is shown to be able to generate a uniform acoustic output with an amplitude modulation scheme. In the rangefinder application, pulse-echo measurements using a single pMUT element demonstrate good transceiving results, capable of detecting objects up to 2.82 m away. As such, this new class of high-SPL and low-driving-voltage pMUTs could be further extended to other applications requiring high acoustic pressure and a small form factor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信