离子和非离子化合物结构对模型脂质膜流动性的影响:计算机模拟和EPR实验。

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Dariusz Man, Barbara Pytel
{"title":"离子和非离子化合物结构对模型脂质膜流动性的影响:计算机模拟和EPR实验。","authors":"Dariusz Man, Barbara Pytel","doi":"10.3390/membranes14120257","DOIUrl":null,"url":null,"abstract":"<p><p>This article investigates the influence of dopant molecules on the structural and dynamic properties of lipid bilayers in liposomes, with a focus on the effects of dopant concentration, size, and introduced electric charge. Experimental studies were performed using electron paramagnetic resonance (EPR) spectroscopy with spin probes, complemented by Monte Carlo simulations. Liposomes, formed via lecithin sonication, were doped with compounds of varying concentrations and analyzed using EPR spectroscopy to assess changes in membrane rigidity. Parallel simulations modeled the membrane's surface layer as a system of electric dipoles on a 20 × 20 rectangular matrix. As in the EPR experiments, the simulation explored the effects of dopant molecules differing in size and charge, while gradually increasing their concentrations in the system. Minimum binding energy configurations were determined from the simulations. The results revealed a strong correlation between the EPR data and simulation outcomes, indicating a clear dependence of membrane stiffening on the concentration, size, and charge of dopant molecules. This effect was most pronounced at low dopant concentrations (~1-1.5% for q = 2 and 1.5-2% for q ≥ 3). No significant stiffening was observed for neutral molecules lacking charge. These findings offer valuable insights into the mechanisms of membrane modulation by dopants and provide a quantitative framework for understanding their impact on lipid bilayer properties.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677769/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Ionic and Nonionic Compounds Structure on the Fluidity of Model Lipid Membranes: Computer Simulation and EPR Experiment.\",\"authors\":\"Dariusz Man, Barbara Pytel\",\"doi\":\"10.3390/membranes14120257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article investigates the influence of dopant molecules on the structural and dynamic properties of lipid bilayers in liposomes, with a focus on the effects of dopant concentration, size, and introduced electric charge. Experimental studies were performed using electron paramagnetic resonance (EPR) spectroscopy with spin probes, complemented by Monte Carlo simulations. Liposomes, formed via lecithin sonication, were doped with compounds of varying concentrations and analyzed using EPR spectroscopy to assess changes in membrane rigidity. Parallel simulations modeled the membrane's surface layer as a system of electric dipoles on a 20 × 20 rectangular matrix. As in the EPR experiments, the simulation explored the effects of dopant molecules differing in size and charge, while gradually increasing their concentrations in the system. Minimum binding energy configurations were determined from the simulations. The results revealed a strong correlation between the EPR data and simulation outcomes, indicating a clear dependence of membrane stiffening on the concentration, size, and charge of dopant molecules. This effect was most pronounced at low dopant concentrations (~1-1.5% for q = 2 and 1.5-2% for q ≥ 3). No significant stiffening was observed for neutral molecules lacking charge. These findings offer valuable insights into the mechanisms of membrane modulation by dopants and provide a quantitative framework for understanding their impact on lipid bilayer properties.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677769/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14120257\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14120257","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了掺杂剂分子对脂质体中脂质双层结构和动力学性质的影响,重点研究了掺杂剂浓度、大小和引入电荷的影响。实验研究采用电子顺磁共振(EPR)光谱与自旋探针,辅以蒙特卡罗模拟。通过卵磷脂超声形成的脂质体被掺杂不同浓度的化合物,并使用EPR光谱分析以评估膜刚性的变化。平行模拟将膜的表层模拟为20 × 20矩形矩阵上的电偶极子系统。与EPR实验一样,模拟探索了掺杂分子大小和电荷不同的影响,同时逐渐增加其在系统中的浓度。通过模拟确定了最小结合能构型。结果显示EPR数据和模拟结果之间有很强的相关性,表明膜硬化明显依赖于掺杂分子的浓度、大小和电荷。这种效应在低掺杂浓度下最为明显(q = 2时为~1-1.5%,q≥3时为1.5-2%)。缺乏电荷的中性分子没有明显的硬化现象。这些发现为掺杂剂对膜调节的机制提供了有价值的见解,并为理解它们对脂质双分子层性质的影响提供了定量框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Ionic and Nonionic Compounds Structure on the Fluidity of Model Lipid Membranes: Computer Simulation and EPR Experiment.

This article investigates the influence of dopant molecules on the structural and dynamic properties of lipid bilayers in liposomes, with a focus on the effects of dopant concentration, size, and introduced electric charge. Experimental studies were performed using electron paramagnetic resonance (EPR) spectroscopy with spin probes, complemented by Monte Carlo simulations. Liposomes, formed via lecithin sonication, were doped with compounds of varying concentrations and analyzed using EPR spectroscopy to assess changes in membrane rigidity. Parallel simulations modeled the membrane's surface layer as a system of electric dipoles on a 20 × 20 rectangular matrix. As in the EPR experiments, the simulation explored the effects of dopant molecules differing in size and charge, while gradually increasing their concentrations in the system. Minimum binding energy configurations were determined from the simulations. The results revealed a strong correlation between the EPR data and simulation outcomes, indicating a clear dependence of membrane stiffening on the concentration, size, and charge of dopant molecules. This effect was most pronounced at low dopant concentrations (~1-1.5% for q = 2 and 1.5-2% for q ≥ 3). No significant stiffening was observed for neutral molecules lacking charge. These findings offer valuable insights into the mechanisms of membrane modulation by dopants and provide a quantitative framework for understanding their impact on lipid bilayer properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信