Geani Teodor Man, Andreea Maria Iordache, Ramona Zgavarogea, Constantin Nechita
{"title":"回收锂离子电池-技术,环境,人类健康和经济问题-小系统文献综述。","authors":"Geani Teodor Man, Andreea Maria Iordache, Ramona Zgavarogea, Constantin Nechita","doi":"10.3390/membranes14120277","DOIUrl":null,"url":null,"abstract":"<p><p>Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource. Classical technologies for recovering lithium from batteries are associated with various environmental issues, so lithium recovery remains challenging. However, the emergence of membrane processes has opened new research directions in lithium recovery, offering hope for more efficient and environmentally friendly solutions. These processes can be integrated into current industrial recycling flows, having a high recovery potential and paving the way for a more sustainable future. A second method, biolexivation, is eco-friendly, but this point illustrates significant drawbacks when used on an industrial scale. We discussed toxicity induced by metals associated with Li to iron-oxidizing bacteria, which needs further study since it causes low recycling efficiency. One major environmental problem is the low efficiency of the recovery of Li from the water cycle, which affects global-scale safety. Still, electromembranes can offer promising solutions in the future, but there is needed to update regulations to actual needs for both producing and recycling LIB.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678226/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recycling Lithium-Ion Batteries-Technologies, Environmental, Human Health, and Economic Issues-Mini-Systematic Literature Review.\",\"authors\":\"Geani Teodor Man, Andreea Maria Iordache, Ramona Zgavarogea, Constantin Nechita\",\"doi\":\"10.3390/membranes14120277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource. Classical technologies for recovering lithium from batteries are associated with various environmental issues, so lithium recovery remains challenging. However, the emergence of membrane processes has opened new research directions in lithium recovery, offering hope for more efficient and environmentally friendly solutions. These processes can be integrated into current industrial recycling flows, having a high recovery potential and paving the way for a more sustainable future. A second method, biolexivation, is eco-friendly, but this point illustrates significant drawbacks when used on an industrial scale. We discussed toxicity induced by metals associated with Li to iron-oxidizing bacteria, which needs further study since it causes low recycling efficiency. One major environmental problem is the low efficiency of the recovery of Li from the water cycle, which affects global-scale safety. Still, electromembranes can offer promising solutions in the future, but there is needed to update regulations to actual needs for both producing and recycling LIB.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678226/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14120277\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14120277","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recycling Lithium-Ion Batteries-Technologies, Environmental, Human Health, and Economic Issues-Mini-Systematic Literature Review.
Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource. Classical technologies for recovering lithium from batteries are associated with various environmental issues, so lithium recovery remains challenging. However, the emergence of membrane processes has opened new research directions in lithium recovery, offering hope for more efficient and environmentally friendly solutions. These processes can be integrated into current industrial recycling flows, having a high recovery potential and paving the way for a more sustainable future. A second method, biolexivation, is eco-friendly, but this point illustrates significant drawbacks when used on an industrial scale. We discussed toxicity induced by metals associated with Li to iron-oxidizing bacteria, which needs further study since it causes low recycling efficiency. One major environmental problem is the low efficiency of the recovery of Li from the water cycle, which affects global-scale safety. Still, electromembranes can offer promising solutions in the future, but there is needed to update regulations to actual needs for both producing and recycling LIB.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.