回收锂离子电池-技术,环境,人类健康和经济问题-小系统文献综述。

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Geani Teodor Man, Andreea Maria Iordache, Ramona Zgavarogea, Constantin Nechita
{"title":"回收锂离子电池-技术,环境,人类健康和经济问题-小系统文献综述。","authors":"Geani Teodor Man, Andreea Maria Iordache, Ramona Zgavarogea, Constantin Nechita","doi":"10.3390/membranes14120277","DOIUrl":null,"url":null,"abstract":"<p><p>Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource. Classical technologies for recovering lithium from batteries are associated with various environmental issues, so lithium recovery remains challenging. However, the emergence of membrane processes has opened new research directions in lithium recovery, offering hope for more efficient and environmentally friendly solutions. These processes can be integrated into current industrial recycling flows, having a high recovery potential and paving the way for a more sustainable future. A second method, biolexivation, is eco-friendly, but this point illustrates significant drawbacks when used on an industrial scale. We discussed toxicity induced by metals associated with Li to iron-oxidizing bacteria, which needs further study since it causes low recycling efficiency. One major environmental problem is the low efficiency of the recovery of Li from the water cycle, which affects global-scale safety. Still, electromembranes can offer promising solutions in the future, but there is needed to update regulations to actual needs for both producing and recycling LIB.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678226/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recycling Lithium-Ion Batteries-Technologies, Environmental, Human Health, and Economic Issues-Mini-Systematic Literature Review.\",\"authors\":\"Geani Teodor Man, Andreea Maria Iordache, Ramona Zgavarogea, Constantin Nechita\",\"doi\":\"10.3390/membranes14120277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource. Classical technologies for recovering lithium from batteries are associated with various environmental issues, so lithium recovery remains challenging. However, the emergence of membrane processes has opened new research directions in lithium recovery, offering hope for more efficient and environmentally friendly solutions. These processes can be integrated into current industrial recycling flows, having a high recovery potential and paving the way for a more sustainable future. A second method, biolexivation, is eco-friendly, but this point illustrates significant drawbacks when used on an industrial scale. We discussed toxicity induced by metals associated with Li to iron-oxidizing bacteria, which needs further study since it causes low recycling efficiency. One major environmental problem is the low efficiency of the recovery of Li from the water cycle, which affects global-scale safety. Still, electromembranes can offer promising solutions in the future, but there is needed to update regulations to actual needs for both producing and recycling LIB.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678226/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14120277\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14120277","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着电子设备技术的不断发展,全球对减少污染的关注为未来锂离子电池的开发、使用和通过回收关键金属提出了挑战。报告了若干人类和环境问题,包括由锂废物引起的相关疾病。锂离子电池中的锂可以通过各种方法回收,防止环境污染,并且锂可以作为可循环利用的资源进行再利用。从电池中回收锂的传统技术与各种环境问题有关,因此锂的回收仍然具有挑战性。然而,膜工艺的出现为锂回收开辟了新的研究方向,为更高效、更环保的解决方案提供了希望。这些过程可以纳入目前的工业回收流程,具有很高的回收潜力,并为更可持续的未来铺平道路。第二种方法,生物萃取,是环保的,但这一点表明了在工业规模上使用时的显着缺点。我们讨论了与Li相关的金属对铁氧化菌的毒性,由于其回收效率较低,需要进一步研究。一个主要的环境问题是从水循环中回收锂的效率低,这影响了全球范围的安全。尽管如此,电膜在未来仍然可以提供有前途的解决方案,但需要更新法规以满足生产和回收LIB的实际需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recycling Lithium-Ion Batteries-Technologies, Environmental, Human Health, and Economic Issues-Mini-Systematic Literature Review.

Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource. Classical technologies for recovering lithium from batteries are associated with various environmental issues, so lithium recovery remains challenging. However, the emergence of membrane processes has opened new research directions in lithium recovery, offering hope for more efficient and environmentally friendly solutions. These processes can be integrated into current industrial recycling flows, having a high recovery potential and paving the way for a more sustainable future. A second method, biolexivation, is eco-friendly, but this point illustrates significant drawbacks when used on an industrial scale. We discussed toxicity induced by metals associated with Li to iron-oxidizing bacteria, which needs further study since it causes low recycling efficiency. One major environmental problem is the low efficiency of the recovery of Li from the water cycle, which affects global-scale safety. Still, electromembranes can offer promising solutions in the future, but there is needed to update regulations to actual needs for both producing and recycling LIB.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信