{"title":"肿瘤抑制miR-30a-3p控制基因的鉴定:ANLN作为乳腺癌的治疗靶点。","authors":"Reiko Mitsueda, Ayako Nagata, Hiroko Toda, Yuya Tomioka, Ryutaro Yasudome, Mayuko Kato, Yoshiaki Shinden, Akihiro Nakajo, Naohiko Seki","doi":"10.3390/ncrna10060060","DOIUrl":null,"url":null,"abstract":"<p><p>Our recently created RNA-sequence-based microRNA (miRNA) expression signature in breast cancer clinical specimens revealed that some <i>miR-30</i> family members were significantly downregulated in cancer tissues. Based on TCGA database analyses, we observed that among the <i>miR-30</i> family members, <i>miR-30a-3p</i> (the passenger strand derived from pre-<i>miR-30a</i>) was significantly downregulated in breast cancer (BC) clinical specimens, and its low expression predicted worse prognoses. Ectopic expression assays showed that <i>miR-30a-3p</i> transfected cancer cells (MDA-MB-157 and MDA-MB-231) had their aggressive phenotypes significantly suppressed, e.g., their proliferation, migration, and invasion abilities. These data indicated that <i>miR-30a-3p</i> acted as a tumor-suppressive miRNA in BC cells. Our subsequent search for <i>miR-30a-3p</i> controlled molecular networks in BC cells yielded a total of 189 genes. Notably, among those 189 genes, cell-cycle-related genes (<i>ANLN</i>, <i>MKI67</i>, <i>CCNB1</i>, <i>NCAPG</i>, <i>ZWINT</i>, <i>E2F7</i>, <i>PDS5A</i>, <i>RIF1</i>, <i>BIRC5</i>, <i>MAD2L1</i>, <i>CACUL1</i>, <i>KIF23</i>, <i>UBE2S</i>, <i>EML4</i>, <i>SEPT10</i>, <i>CLTC</i>, and <i>PCNP</i>) were enriched according to a GeneCodis 4 database analysis. Moreover, the overexpression of four genes (<i>ANLN</i>, <i>CCNB1</i>, <i>BIRC5</i>, and <i>KIF23</i>) significantly predicted worse prognoses for patients with BC according to TCGA analyses. Finally, our assays demonstrated that the overexpression of <i>ANLN</i> had cancer-promoting functions in BC cells. The involvement of <i>miR-30a-3p</i> (the passenger strand) in BC molecular pathogenesis is a new concept in cancer research, and the outcomes of our study strongly indicate the importance of analyzing passenger strands of miRNAs in BC cells.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"10 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677261/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of Tumor-Suppressive <i>miR-30a-3p</i> Controlled Genes: <i>ANLN</i> as a Therapeutic Target in Breast Cancer.\",\"authors\":\"Reiko Mitsueda, Ayako Nagata, Hiroko Toda, Yuya Tomioka, Ryutaro Yasudome, Mayuko Kato, Yoshiaki Shinden, Akihiro Nakajo, Naohiko Seki\",\"doi\":\"10.3390/ncrna10060060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our recently created RNA-sequence-based microRNA (miRNA) expression signature in breast cancer clinical specimens revealed that some <i>miR-30</i> family members were significantly downregulated in cancer tissues. Based on TCGA database analyses, we observed that among the <i>miR-30</i> family members, <i>miR-30a-3p</i> (the passenger strand derived from pre-<i>miR-30a</i>) was significantly downregulated in breast cancer (BC) clinical specimens, and its low expression predicted worse prognoses. Ectopic expression assays showed that <i>miR-30a-3p</i> transfected cancer cells (MDA-MB-157 and MDA-MB-231) had their aggressive phenotypes significantly suppressed, e.g., their proliferation, migration, and invasion abilities. These data indicated that <i>miR-30a-3p</i> acted as a tumor-suppressive miRNA in BC cells. Our subsequent search for <i>miR-30a-3p</i> controlled molecular networks in BC cells yielded a total of 189 genes. Notably, among those 189 genes, cell-cycle-related genes (<i>ANLN</i>, <i>MKI67</i>, <i>CCNB1</i>, <i>NCAPG</i>, <i>ZWINT</i>, <i>E2F7</i>, <i>PDS5A</i>, <i>RIF1</i>, <i>BIRC5</i>, <i>MAD2L1</i>, <i>CACUL1</i>, <i>KIF23</i>, <i>UBE2S</i>, <i>EML4</i>, <i>SEPT10</i>, <i>CLTC</i>, and <i>PCNP</i>) were enriched according to a GeneCodis 4 database analysis. Moreover, the overexpression of four genes (<i>ANLN</i>, <i>CCNB1</i>, <i>BIRC5</i>, and <i>KIF23</i>) significantly predicted worse prognoses for patients with BC according to TCGA analyses. Finally, our assays demonstrated that the overexpression of <i>ANLN</i> had cancer-promoting functions in BC cells. The involvement of <i>miR-30a-3p</i> (the passenger strand) in BC molecular pathogenesis is a new concept in cancer research, and the outcomes of our study strongly indicate the importance of analyzing passenger strands of miRNAs in BC cells.</p>\",\"PeriodicalId\":19271,\"journal\":{\"name\":\"Non-Coding RNA\",\"volume\":\"10 6\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677261/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Coding RNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ncrna10060060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna10060060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identification of Tumor-Suppressive miR-30a-3p Controlled Genes: ANLN as a Therapeutic Target in Breast Cancer.
Our recently created RNA-sequence-based microRNA (miRNA) expression signature in breast cancer clinical specimens revealed that some miR-30 family members were significantly downregulated in cancer tissues. Based on TCGA database analyses, we observed that among the miR-30 family members, miR-30a-3p (the passenger strand derived from pre-miR-30a) was significantly downregulated in breast cancer (BC) clinical specimens, and its low expression predicted worse prognoses. Ectopic expression assays showed that miR-30a-3p transfected cancer cells (MDA-MB-157 and MDA-MB-231) had their aggressive phenotypes significantly suppressed, e.g., their proliferation, migration, and invasion abilities. These data indicated that miR-30a-3p acted as a tumor-suppressive miRNA in BC cells. Our subsequent search for miR-30a-3p controlled molecular networks in BC cells yielded a total of 189 genes. Notably, among those 189 genes, cell-cycle-related genes (ANLN, MKI67, CCNB1, NCAPG, ZWINT, E2F7, PDS5A, RIF1, BIRC5, MAD2L1, CACUL1, KIF23, UBE2S, EML4, SEPT10, CLTC, and PCNP) were enriched according to a GeneCodis 4 database analysis. Moreover, the overexpression of four genes (ANLN, CCNB1, BIRC5, and KIF23) significantly predicted worse prognoses for patients with BC according to TCGA analyses. Finally, our assays demonstrated that the overexpression of ANLN had cancer-promoting functions in BC cells. The involvement of miR-30a-3p (the passenger strand) in BC molecular pathogenesis is a new concept in cancer research, and the outcomes of our study strongly indicate the importance of analyzing passenger strands of miRNAs in BC cells.
Non-Coding RNABiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍:
Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.