他法嗪转乙酰酶活性的丧失足以导致睾丸不育。

IF 2.2 Q3 DEVELOPMENTAL BIOLOGY
Paige L Snider, Elizabeth A Sierra Potchanant, Catalina Matias, Donna M Edwards, Jeffrey J Brault, Simon J Conway
{"title":"他法嗪转乙酰酶活性的丧失足以导致睾丸不育。","authors":"Paige L Snider, Elizabeth A Sierra Potchanant, Catalina Matias, Donna M Edwards, Jeffrey J Brault, Simon J Conway","doi":"10.3390/jdb12040032","DOIUrl":null,"url":null,"abstract":"<p><p>Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility is observed in several <i>Tafazzin</i> (<i>Taz</i>) mouse alleles and in a <i>Drosophila</i> mutant. Herein, we examined the male infertility phenotype in a BTHS-patient-derived <i>D75H</i> point-mutant knockin mouse (<i>Taz<sup>PM</sup></i>) allele that expresses a mutant protein lacking transacetylase activity. Neonatal and adult <i>Taz<sup>PM</sup></i> testes were hypoplastic, and their epididymis lacked sperm. Histology and biomarker analysis revealed <i>Taz<sup>PM</sup></i> spermatogenesis is arrested prior to sexual maturation due to an inability to undergo meiosis and the generation of haploid spermatids. Moreover, <i>Taz<sup>PM</sup></i> testicular mitochondria were found to be structurally abnormal, and there was an elevation of p53-dependent apoptosis within <i>Taz<sup>PM</sup></i> seminiferous tubules. Immunoblot analysis revealed that <i>Taz<sup>PM</sup></i> gamete genome integrity was compromised, and both histone γ-H2Ax and Nucleoside diphosphate kinase-5 protein expression were absent in juvenile <i>Taz<sup>PM</sup></i> testes when compared to controls. We demonstrate that Taz-mediated transacetylase activity is required within mitochondria for normal spermatogenesis, and its absence results in meiotic arrest. We hypothesize that elevated <i>Taz<sup>PM</sup></i> spermatogonial apoptosis causes azoospermia and complete infertility.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"12 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677720/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Loss of Tafazzin Transacetylase Activity Is Sufficient to Drive Testicular Infertility.\",\"authors\":\"Paige L Snider, Elizabeth A Sierra Potchanant, Catalina Matias, Donna M Edwards, Jeffrey J Brault, Simon J Conway\",\"doi\":\"10.3390/jdb12040032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility is observed in several <i>Tafazzin</i> (<i>Taz</i>) mouse alleles and in a <i>Drosophila</i> mutant. Herein, we examined the male infertility phenotype in a BTHS-patient-derived <i>D75H</i> point-mutant knockin mouse (<i>Taz<sup>PM</sup></i>) allele that expresses a mutant protein lacking transacetylase activity. Neonatal and adult <i>Taz<sup>PM</sup></i> testes were hypoplastic, and their epididymis lacked sperm. Histology and biomarker analysis revealed <i>Taz<sup>PM</sup></i> spermatogenesis is arrested prior to sexual maturation due to an inability to undergo meiosis and the generation of haploid spermatids. Moreover, <i>Taz<sup>PM</sup></i> testicular mitochondria were found to be structurally abnormal, and there was an elevation of p53-dependent apoptosis within <i>Taz<sup>PM</sup></i> seminiferous tubules. Immunoblot analysis revealed that <i>Taz<sup>PM</sup></i> gamete genome integrity was compromised, and both histone γ-H2Ax and Nucleoside diphosphate kinase-5 protein expression were absent in juvenile <i>Taz<sup>PM</sup></i> testes when compared to controls. We demonstrate that Taz-mediated transacetylase activity is required within mitochondria for normal spermatogenesis, and its absence results in meiotic arrest. We hypothesize that elevated <i>Taz<sup>PM</sup></i> spermatogonial apoptosis causes azoospermia and complete infertility.</p>\",\"PeriodicalId\":15563,\"journal\":{\"name\":\"Journal of Developmental Biology\",\"volume\":\"12 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677720/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jdb12040032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb12040032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Barth综合征(BTHS)是一种罕见的、婴儿发病的x连锁线粒体病,表现为发育不全、生长不全、骨骼肌病、中性粒细胞减少和心脏异常,这是由遗传性TAFAZZIN转乙酰酶突变引起的线粒体功能障碍引起的。虽然在BTHS患者中没有报道,但在几个taafazzin (Taz)小鼠等位基因和果蝇突变体中观察到男性不育。在此,我们检测了bhs患者来源的D75H点突变敲入小鼠(TazPM)等位基因的男性不育表型,该等位基因表达缺乏转乙酰化酶活性的突变蛋白。新生儿和成人TazPM睾丸发育不全,附睾缺乏精子。组织学和生物标志物分析显示,由于无法进行减数分裂和单倍体精子的产生,TazPM精子发生在性成熟之前被阻止。此外,TazPM睾丸线粒体结构异常,TazPM精小管内p53依赖性细胞凋亡升高。免疫印迹分析显示,TazPM幼崽睾丸中组蛋白γ-H2Ax和核苷二磷酸激酶-5蛋白的表达与对照组相比均缺失。我们证明,taz介导的转乙酰酶活性是线粒体正常精子发生所必需的,其缺失导致减数分裂停滞。我们假设升高的TazPM精子细胞凋亡导致无精子症和完全不孕症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Loss of Tafazzin Transacetylase Activity Is Sufficient to Drive Testicular Infertility.

Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility is observed in several Tafazzin (Taz) mouse alleles and in a Drosophila mutant. Herein, we examined the male infertility phenotype in a BTHS-patient-derived D75H point-mutant knockin mouse (TazPM) allele that expresses a mutant protein lacking transacetylase activity. Neonatal and adult TazPM testes were hypoplastic, and their epididymis lacked sperm. Histology and biomarker analysis revealed TazPM spermatogenesis is arrested prior to sexual maturation due to an inability to undergo meiosis and the generation of haploid spermatids. Moreover, TazPM testicular mitochondria were found to be structurally abnormal, and there was an elevation of p53-dependent apoptosis within TazPM seminiferous tubules. Immunoblot analysis revealed that TazPM gamete genome integrity was compromised, and both histone γ-H2Ax and Nucleoside diphosphate kinase-5 protein expression were absent in juvenile TazPM testes when compared to controls. We demonstrate that Taz-mediated transacetylase activity is required within mitochondria for normal spermatogenesis, and its absence results in meiotic arrest. We hypothesize that elevated TazPM spermatogonial apoptosis causes azoospermia and complete infertility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Developmental Biology
Journal of Developmental Biology Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
4.10
自引率
18.50%
发文量
44
审稿时长
11 weeks
期刊介绍: The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信