核小体DNA的几何变异决定了高阶染色质结构和增强子-启动子通讯。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Stefjord Todolli, Ekaterina V Nizovtseva, Nicolas Clauvelin, Ondrej Maxian, Vasily M Studitsky, Wilma K Olson
{"title":"核小体DNA的几何变异决定了高阶染色质结构和增强子-启动子通讯。","authors":"Stefjord Todolli, Ekaterina V Nizovtseva, Nicolas Clauvelin, Ondrej Maxian, Vasily M Studitsky, Wilma K Olson","doi":"10.1063/5.0240991","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamic organization of chromatin plays an essential role in the regulation of genetic activity, interconverting between open and compact forms at the global level. The mechanisms underlying these large-scale changes remain a topic of widespread interest. The simulations of nucleosome-decorated DNA reported herein reveal profound effects of the nucleosome itself on overall chromatin properties. Models that capture the long-range communication between proteins on nucleosome-decorated DNA chains incorporate DNA pathways different from those that were previously proposed based on ultracentrifugation and chemical cross-linking data. New quantitative biochemical assays measuring the rates of communication between interacting proteins bound to a promoter and an enhancer at the ends of saturated, precisely positioned, nucleosome-decorated DNA chains reveal a chromatin architecture with a three-nucleosome repeat, a model inconsistent with the two-start configurations deduced from earlier physical studies. Accompanying computations uncover small differences in the twisting of successive base pairs that seemingly give rise to the observed global properties. These data suggest that the novel state of chromatin determined under physiological conditions differs from that deduced under standard physical conditions, likely reflecting the different salt conditions used in the two types of experiments. This novel chromatin state may be important for a number of DNA transactions that occur in the cell nucleus.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 24","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681976/pdf/","citationCount":"0","resultStr":"{\"title\":\"Geometric variations in nucleosomal DNA dictate higher-order chromatin structure and enhancer-promoter communication.\",\"authors\":\"Stefjord Todolli, Ekaterina V Nizovtseva, Nicolas Clauvelin, Ondrej Maxian, Vasily M Studitsky, Wilma K Olson\",\"doi\":\"10.1063/5.0240991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dynamic organization of chromatin plays an essential role in the regulation of genetic activity, interconverting between open and compact forms at the global level. The mechanisms underlying these large-scale changes remain a topic of widespread interest. The simulations of nucleosome-decorated DNA reported herein reveal profound effects of the nucleosome itself on overall chromatin properties. Models that capture the long-range communication between proteins on nucleosome-decorated DNA chains incorporate DNA pathways different from those that were previously proposed based on ultracentrifugation and chemical cross-linking data. New quantitative biochemical assays measuring the rates of communication between interacting proteins bound to a promoter and an enhancer at the ends of saturated, precisely positioned, nucleosome-decorated DNA chains reveal a chromatin architecture with a three-nucleosome repeat, a model inconsistent with the two-start configurations deduced from earlier physical studies. Accompanying computations uncover small differences in the twisting of successive base pairs that seemingly give rise to the observed global properties. These data suggest that the novel state of chromatin determined under physiological conditions differs from that deduced under standard physical conditions, likely reflecting the different salt conditions used in the two types of experiments. This novel chromatin state may be important for a number of DNA transactions that occur in the cell nucleus.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"161 24\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681976/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0240991\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0240991","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

染色质的动态组织在遗传活动的调控中起着至关重要的作用,在全球水平上在开放和紧密形式之间相互转换。这些大规模变化背后的机制仍然是一个广泛关注的话题。本文报道的核小体修饰DNA的模拟揭示了核小体本身对整体染色质特性的深远影响。捕获核小体修饰DNA链上蛋白质之间远程通信的模型包含与先前基于超离心和化学交联数据提出的DNA途径不同的DNA途径。新的定量生化分析测量了饱和、精确定位、核小体修饰的DNA链末端与启动子和增强子结合的相互作用蛋白之间的通信速率,揭示了具有三核小体重复的染色质结构,这一模型与早期物理研究推断的双起点结构不一致。随附的计算揭示了连续碱基对扭曲的微小差异,这些差异似乎导致了观察到的整体性质。这些数据表明,在生理条件下测定的新染色质状态不同于在标准物理条件下推断的染色质状态,可能反映了两种实验中使用的不同盐条件。这种新的染色质状态对于发生在细胞核中的许多DNA交易可能是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric variations in nucleosomal DNA dictate higher-order chromatin structure and enhancer-promoter communication.

The dynamic organization of chromatin plays an essential role in the regulation of genetic activity, interconverting between open and compact forms at the global level. The mechanisms underlying these large-scale changes remain a topic of widespread interest. The simulations of nucleosome-decorated DNA reported herein reveal profound effects of the nucleosome itself on overall chromatin properties. Models that capture the long-range communication between proteins on nucleosome-decorated DNA chains incorporate DNA pathways different from those that were previously proposed based on ultracentrifugation and chemical cross-linking data. New quantitative biochemical assays measuring the rates of communication between interacting proteins bound to a promoter and an enhancer at the ends of saturated, precisely positioned, nucleosome-decorated DNA chains reveal a chromatin architecture with a three-nucleosome repeat, a model inconsistent with the two-start configurations deduced from earlier physical studies. Accompanying computations uncover small differences in the twisting of successive base pairs that seemingly give rise to the observed global properties. These data suggest that the novel state of chromatin determined under physiological conditions differs from that deduced under standard physical conditions, likely reflecting the different salt conditions used in the two types of experiments. This novel chromatin state may be important for a number of DNA transactions that occur in the cell nucleus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信