{"title":"用立体光刻印刷和真空铸造制作先天性心脏病超柔性三维心脏模型的疗效和准确性评价:一项多中心临床试验。","authors":"Isao Shiraishi, Masaaki Yamagishi, Takaya Hoashi, Yoshiaki Kato, Shigemitsu Iwai, Hajime Ichikawa, Tatsuya Nishii, Hiroyuki Yamagishi, Satoshi Yasukochi, Masaaki Kawada, Takaaki Suzuki, Takeshi Shinkawa, Naoki Yoshimura, Ryo Inuzuka, Yasutaka Hirata, Keiichi Hirose, Akio Ikai, Kisaburo Sakamoto, Yasuhiro Kotani, Shingo Kasahara, Toshiaki Hisada, Kenichi Kurosaki","doi":"10.3390/jcdd11120387","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) printing is an advanced technology for accurately understanding anatomy and supporting the successful surgical management of complex congenital heart disease (CHD). We aimed to evaluate whether our super-flexible 3D heart models could facilitate preoperative decision-making and surgical simulation for complex CHD. The super-flexible heart models were fabricated by stereolithography 3D printing of the internal and external contours of the heart from cardiac computed tomography (CT) data, followed by vacuum casting with a polyurethane material similar in elasticity to a child's heart. Nineteen pediatric patients with complex CHD were enrolled (median age, 10 months). The primary endpoint was defined as the percentage of patients rated as \"essential\" on the surgeons' postoperative 5-point Likert scale. The accuracy of the models was validated by a non-destructive method using industrial CT. The super-flexible heart models allowed detailed anatomical diagnosis and simulated surgery with incisions and sutures. Thirteen patients (68.4%) were classified as \"essential\" by the primary surgeons after surgery, with a 95% confidence interval of 43.4-87.4%, meeting the primary endpoint. The product error within 90% of the total external and internal surfaces was 0.54 ± 0.21 mm. The super-flexible 3D heart models are accurate, reliable, and useful tools to assist surgeons in decision-making and allow for preoperative simulation in CHD.</p>","PeriodicalId":15197,"journal":{"name":"Journal of Cardiovascular Development and Disease","volume":"11 12","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677195/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Efficacy and Accuracy of Super-Flexible Three-Dimensional Heart Models of Congenital Heart Disease Made via Stereolithography Printing and Vacuum Casting: A Multicenter Clinical Trial.\",\"authors\":\"Isao Shiraishi, Masaaki Yamagishi, Takaya Hoashi, Yoshiaki Kato, Shigemitsu Iwai, Hajime Ichikawa, Tatsuya Nishii, Hiroyuki Yamagishi, Satoshi Yasukochi, Masaaki Kawada, Takaaki Suzuki, Takeshi Shinkawa, Naoki Yoshimura, Ryo Inuzuka, Yasutaka Hirata, Keiichi Hirose, Akio Ikai, Kisaburo Sakamoto, Yasuhiro Kotani, Shingo Kasahara, Toshiaki Hisada, Kenichi Kurosaki\",\"doi\":\"10.3390/jcdd11120387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) printing is an advanced technology for accurately understanding anatomy and supporting the successful surgical management of complex congenital heart disease (CHD). We aimed to evaluate whether our super-flexible 3D heart models could facilitate preoperative decision-making and surgical simulation for complex CHD. The super-flexible heart models were fabricated by stereolithography 3D printing of the internal and external contours of the heart from cardiac computed tomography (CT) data, followed by vacuum casting with a polyurethane material similar in elasticity to a child's heart. Nineteen pediatric patients with complex CHD were enrolled (median age, 10 months). The primary endpoint was defined as the percentage of patients rated as \\\"essential\\\" on the surgeons' postoperative 5-point Likert scale. The accuracy of the models was validated by a non-destructive method using industrial CT. The super-flexible heart models allowed detailed anatomical diagnosis and simulated surgery with incisions and sutures. Thirteen patients (68.4%) were classified as \\\"essential\\\" by the primary surgeons after surgery, with a 95% confidence interval of 43.4-87.4%, meeting the primary endpoint. The product error within 90% of the total external and internal surfaces was 0.54 ± 0.21 mm. The super-flexible 3D heart models are accurate, reliable, and useful tools to assist surgeons in decision-making and allow for preoperative simulation in CHD.</p>\",\"PeriodicalId\":15197,\"journal\":{\"name\":\"Journal of Cardiovascular Development and Disease\",\"volume\":\"11 12\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677195/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Development and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jcdd11120387\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Development and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcdd11120387","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Evaluation of the Efficacy and Accuracy of Super-Flexible Three-Dimensional Heart Models of Congenital Heart Disease Made via Stereolithography Printing and Vacuum Casting: A Multicenter Clinical Trial.
Three-dimensional (3D) printing is an advanced technology for accurately understanding anatomy and supporting the successful surgical management of complex congenital heart disease (CHD). We aimed to evaluate whether our super-flexible 3D heart models could facilitate preoperative decision-making and surgical simulation for complex CHD. The super-flexible heart models were fabricated by stereolithography 3D printing of the internal and external contours of the heart from cardiac computed tomography (CT) data, followed by vacuum casting with a polyurethane material similar in elasticity to a child's heart. Nineteen pediatric patients with complex CHD were enrolled (median age, 10 months). The primary endpoint was defined as the percentage of patients rated as "essential" on the surgeons' postoperative 5-point Likert scale. The accuracy of the models was validated by a non-destructive method using industrial CT. The super-flexible heart models allowed detailed anatomical diagnosis and simulated surgery with incisions and sutures. Thirteen patients (68.4%) were classified as "essential" by the primary surgeons after surgery, with a 95% confidence interval of 43.4-87.4%, meeting the primary endpoint. The product error within 90% of the total external and internal surfaces was 0.54 ± 0.21 mm. The super-flexible 3D heart models are accurate, reliable, and useful tools to assist surgeons in decision-making and allow for preoperative simulation in CHD.