OPA3抑制mtDNA应激介导的cGAS-STING通路促进结直肠癌进展。

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Yuqiang Yin, Zhenxin Ma, Siwen Yuan, Kangfeng Xu, Xiaofeng Wang
{"title":"OPA3抑制mtDNA应激介导的cGAS-STING通路促进结直肠癌进展。","authors":"Yuqiang Yin, Zhenxin Ma, Siwen Yuan, Kangfeng Xu, Xiaofeng Wang","doi":"10.1007/s11626-024-01000-3","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is an extremely harmful malignant tumor. Optic atrophy 3 (OPA3) is highly expressed in multiple tumors, but its action in CRC is still unknown. This research aims to explore the role of OPA3 and its related molecular mechanisms for CRC. Firstly, we overexpressed and knocked down OPA3 to examine its effect on CRC cell (HT29 cell) growth. CRC cell viability, migration, invasion, and levels of proliferation markers and cell cycle-associated proteins were measured. Then, we treated cells with carbonyl cyanide m-chlorophenyl hydrazone (CCCP) to explore mitochondrial dysfunction and mtDNA stress in HT29 cells. Next, we overexpressed cGAS and STING to examine their correlation with OPA3. The results showed that OPA3 overexpression enhanced CRC cell viability, migration, invasion, and the levels of PCNA, Cyclin A2, and Cyclin B1. Knockdown of OPA3 had the opposite effects. Moreover, OPA3 knockdown facilitated mitochondrial dysfunction and mtDNA stress in CRC cells. OPA3 overexpression also inhibited CCCP-induced mitochondrial stress disorder. Additionally, OPA3 knockdown elevated the protein levels of p-STING and cGAS and the mRNA level of STING target genes. Furthermore, overexpression of either cGAS or STING partially alleviated the enhancement of HT29 cell proliferation, migration, and invasion mediated by OPA3 overexpression. In conclusion, OPA3 promotes CRC progression via inhibiting the cGAS-STING pathway, which is mediated by mtDNA stress. OPA3 may be a new potential target for CRC.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OPA3 inhibits the cGAS-STING pathway mediated by mtDNA stress to promote colorectal cancer progression.\",\"authors\":\"Yuqiang Yin, Zhenxin Ma, Siwen Yuan, Kangfeng Xu, Xiaofeng Wang\",\"doi\":\"10.1007/s11626-024-01000-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorectal cancer (CRC) is an extremely harmful malignant tumor. Optic atrophy 3 (OPA3) is highly expressed in multiple tumors, but its action in CRC is still unknown. This research aims to explore the role of OPA3 and its related molecular mechanisms for CRC. Firstly, we overexpressed and knocked down OPA3 to examine its effect on CRC cell (HT29 cell) growth. CRC cell viability, migration, invasion, and levels of proliferation markers and cell cycle-associated proteins were measured. Then, we treated cells with carbonyl cyanide m-chlorophenyl hydrazone (CCCP) to explore mitochondrial dysfunction and mtDNA stress in HT29 cells. Next, we overexpressed cGAS and STING to examine their correlation with OPA3. The results showed that OPA3 overexpression enhanced CRC cell viability, migration, invasion, and the levels of PCNA, Cyclin A2, and Cyclin B1. Knockdown of OPA3 had the opposite effects. Moreover, OPA3 knockdown facilitated mitochondrial dysfunction and mtDNA stress in CRC cells. OPA3 overexpression also inhibited CCCP-induced mitochondrial stress disorder. Additionally, OPA3 knockdown elevated the protein levels of p-STING and cGAS and the mRNA level of STING target genes. Furthermore, overexpression of either cGAS or STING partially alleviated the enhancement of HT29 cell proliferation, migration, and invasion mediated by OPA3 overexpression. In conclusion, OPA3 promotes CRC progression via inhibiting the cGAS-STING pathway, which is mediated by mtDNA stress. OPA3 may be a new potential target for CRC.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-024-01000-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-01000-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

结直肠癌(CRC)是一种危害极大的恶性肿瘤。Optic atrophy 3 (OPA3)在多种肿瘤中高表达,但其在CRC中的作用尚不清楚。本研究旨在探讨OPA3在结直肠癌中的作用及其相关分子机制。首先,我们通过过表达和敲低OPA3来检测其对CRC细胞(HT29细胞)生长的影响。测量结直肠癌细胞活力、迁移、侵袭以及增殖标志物和细胞周期相关蛋白的水平。然后,我们用羰基氰化物间氯苯腙(CCCP)处理细胞,探讨HT29细胞的线粒体功能障碍和mtDNA应激。接下来,我们过表达cGAS和STING来检验它们与OPA3的相关性。结果显示,过表达OPA3可增强结直肠癌细胞的活力、迁移、侵袭以及PCNA、Cyclin A2和Cyclin B1的水平。而敲低OPA3则有相反的效果。此外,OPA3敲低可促进CRC细胞的线粒体功能障碍和mtDNA应激。过表达OPA3也能抑制cccp诱导的线粒体应激障碍。此外,OPA3敲低可提高p-STING和cGAS蛋白水平以及STING靶基因mRNA水平。此外,过表达cGAS或STING均可部分缓解过表达OPA3介导的HT29细胞增殖、迁移和侵袭增强。综上所述,OPA3通过抑制mtDNA应激介导的cGAS-STING通路促进CRC进展。OPA3可能是CRC新的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OPA3 inhibits the cGAS-STING pathway mediated by mtDNA stress to promote colorectal cancer progression.

Colorectal cancer (CRC) is an extremely harmful malignant tumor. Optic atrophy 3 (OPA3) is highly expressed in multiple tumors, but its action in CRC is still unknown. This research aims to explore the role of OPA3 and its related molecular mechanisms for CRC. Firstly, we overexpressed and knocked down OPA3 to examine its effect on CRC cell (HT29 cell) growth. CRC cell viability, migration, invasion, and levels of proliferation markers and cell cycle-associated proteins were measured. Then, we treated cells with carbonyl cyanide m-chlorophenyl hydrazone (CCCP) to explore mitochondrial dysfunction and mtDNA stress in HT29 cells. Next, we overexpressed cGAS and STING to examine their correlation with OPA3. The results showed that OPA3 overexpression enhanced CRC cell viability, migration, invasion, and the levels of PCNA, Cyclin A2, and Cyclin B1. Knockdown of OPA3 had the opposite effects. Moreover, OPA3 knockdown facilitated mitochondrial dysfunction and mtDNA stress in CRC cells. OPA3 overexpression also inhibited CCCP-induced mitochondrial stress disorder. Additionally, OPA3 knockdown elevated the protein levels of p-STING and cGAS and the mRNA level of STING target genes. Furthermore, overexpression of either cGAS or STING partially alleviated the enhancement of HT29 cell proliferation, migration, and invasion mediated by OPA3 overexpression. In conclusion, OPA3 promotes CRC progression via inhibiting the cGAS-STING pathway, which is mediated by mtDNA stress. OPA3 may be a new potential target for CRC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信