创新的基于墨水的3D水凝胶生物打印配方,用于组织工程应用。

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2024-12-17 DOI:10.3390/gels10120831
Ana Catarina Sousa, Grace Mcdermott, Fraser Shields, Rui Alvites, Bruna Lopes, Patrícia Sousa, Alícia Moreira, André Coelho, José Domingos Santos, Luís Atayde, Nuno Alves, Stephen M Richardson, Marco Domingos, Ana Colette Maurício
{"title":"创新的基于墨水的3D水凝胶生物打印配方,用于组织工程应用。","authors":"Ana Catarina Sousa, Grace Mcdermott, Fraser Shields, Rui Alvites, Bruna Lopes, Patrícia Sousa, Alícia Moreira, André Coelho, José Domingos Santos, Luís Atayde, Nuno Alves, Stephen M Richardson, Marco Domingos, Ana Colette Maurício","doi":"10.3390/gels10120831","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing. Rheological tests performed on crosslinked hydrogels confirm the formation of solid-like structures, consistently indicating a superior storage modulus in relation to the loss modulus. The swelling behavior analysis showed that the addition of Col and nHA into an alginate matrix can enhance the swelling rate of the resulting composite hydrogels, which maximizes cell proliferation within the structure. The LIVE/DEAD assay outcomes demonstrate that the inclusion of nHA and Col did not detrimentally affect the viability of hBMSCs over seven days post-printing. PrestoBlue<sup>TM</sup> revealed a higher hBMSCs viability in the alginate-nHA-Col hydrogel compared to the remaining groups. Gene expression analysis revealed that alginate-nHA-col bioink favored a higher expression of osteogenic markers, including secreted phosphoprotein-1 (SPP1) and collagen type 1 alpha 2 chain (COL1A2) in hBMSCs after 14 days, indicating the pro-osteogenic differentiation potential of the hydrogel. This study demonstrates that the incorporation of nHA and Col into alginate enhances osteogenic potential and therefore provides a bioprinted model to systematically study osteogenesis and the early stages of tissue maturation in vitro.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 12","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675550/pdf/","citationCount":"0","resultStr":"{\"title\":\"Innovative Ink-Based 3D Hydrogel Bioprinted Formulations for Tissue Engineering Applications.\",\"authors\":\"Ana Catarina Sousa, Grace Mcdermott, Fraser Shields, Rui Alvites, Bruna Lopes, Patrícia Sousa, Alícia Moreira, André Coelho, José Domingos Santos, Luís Atayde, Nuno Alves, Stephen M Richardson, Marco Domingos, Ana Colette Maurício\",\"doi\":\"10.3390/gels10120831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing. Rheological tests performed on crosslinked hydrogels confirm the formation of solid-like structures, consistently indicating a superior storage modulus in relation to the loss modulus. The swelling behavior analysis showed that the addition of Col and nHA into an alginate matrix can enhance the swelling rate of the resulting composite hydrogels, which maximizes cell proliferation within the structure. The LIVE/DEAD assay outcomes demonstrate that the inclusion of nHA and Col did not detrimentally affect the viability of hBMSCs over seven days post-printing. PrestoBlue<sup>TM</sup> revealed a higher hBMSCs viability in the alginate-nHA-Col hydrogel compared to the remaining groups. Gene expression analysis revealed that alginate-nHA-col bioink favored a higher expression of osteogenic markers, including secreted phosphoprotein-1 (SPP1) and collagen type 1 alpha 2 chain (COL1A2) in hBMSCs after 14 days, indicating the pro-osteogenic differentiation potential of the hydrogel. This study demonstrates that the incorporation of nHA and Col into alginate enhances osteogenic potential and therefore provides a bioprinted model to systematically study osteogenesis and the early stages of tissue maturation in vitro.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"10 12\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675550/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels10120831\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10120831","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

具有改进的仿生学的三维(3D)模型对于减少动物实验和推动组织工程创新至关重要。在这项研究中,我们研究了使用海藻酸盐基材料作为聚合物墨水,使用人骨髓干细胞/基质细胞(hBMSCs)进行成骨模型的3D生物打印。一种结合海藻酸盐、纳米羟基磷灰石(nHA)、I型胶原(Col)和hBMSCs的复合生物墨水被开发出来,并用于挤压打印。对交联水凝胶进行的流变学测试证实了固体状结构的形成,一致表明相对于损失模量,其存储模量更优越。膨胀行为分析表明,在海藻酸盐基质中加入Col和nHA可以提高复合水凝胶的膨胀率,从而最大化细胞在结构内的增殖。LIVE/DEAD实验结果表明,nHA和Col在打印后7天内对hBMSCs的活力没有不利影响。PrestoBlueTM显示,与其他组相比,藻酸盐- nha - col水凝胶中hBMSCs的活力更高。基因表达分析显示,藻酸盐- nha -col生物链接有利于14天后hBMSCs中分泌磷酸化蛋白-1 (SPP1)和胶原型α - 2链(COL1A2)等成骨标志物的高表达,表明水凝胶具有促成骨分化的潜力。本研究表明,海藻酸盐中掺入nHA和Col可增强成骨潜能,因此提供了一种生物打印模型来系统地研究体外成骨和组织成熟的早期阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovative Ink-Based 3D Hydrogel Bioprinted Formulations for Tissue Engineering Applications.

Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing. Rheological tests performed on crosslinked hydrogels confirm the formation of solid-like structures, consistently indicating a superior storage modulus in relation to the loss modulus. The swelling behavior analysis showed that the addition of Col and nHA into an alginate matrix can enhance the swelling rate of the resulting composite hydrogels, which maximizes cell proliferation within the structure. The LIVE/DEAD assay outcomes demonstrate that the inclusion of nHA and Col did not detrimentally affect the viability of hBMSCs over seven days post-printing. PrestoBlueTM revealed a higher hBMSCs viability in the alginate-nHA-Col hydrogel compared to the remaining groups. Gene expression analysis revealed that alginate-nHA-col bioink favored a higher expression of osteogenic markers, including secreted phosphoprotein-1 (SPP1) and collagen type 1 alpha 2 chain (COL1A2) in hBMSCs after 14 days, indicating the pro-osteogenic differentiation potential of the hydrogel. This study demonstrates that the incorporation of nHA and Col into alginate enhances osteogenic potential and therefore provides a bioprinted model to systematically study osteogenesis and the early stages of tissue maturation in vitro.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信