抗菌剂Zn2+-羧甲基壳聚糖低温凝胶通过配位键控制环丙沙星的加载和释放。

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2024-12-20 DOI:10.3390/gels10120841
Svetlana Bratskaya, Andrey Boroda, Tamara Bogomaz, Yuliya Privar, Mariya Maiorova, Daniil Malyshev, Anastasiia Shindina, Anna Skatova, Roman Goncharuk
{"title":"抗菌剂Zn2+-羧甲基壳聚糖低温凝胶通过配位键控制环丙沙星的加载和释放。","authors":"Svetlana Bratskaya, Andrey Boroda, Tamara Bogomaz, Yuliya Privar, Mariya Maiorova, Daniil Malyshev, Anastasiia Shindina, Anna Skatova, Roman Goncharuk","doi":"10.3390/gels10120841","DOIUrl":null,"url":null,"abstract":"<p><p>The local application of broad-spectrum antibiotics via polymeric drug delivery systems is a promising alternative to their systemic administration in wound healing, prevention and treatment of infections associated with surgical implants. However, low and poorly controlled loading efficiency and 100% burst release are common problems for the materials with weak physical interaction between antibiotics and polymeric matrices. Here, we report a new multifunctional carboxymethyl chitosan (CMC) cryogel, which efficiently prevents bacterial adhesion to the surface, kills bacteria in the solution via controlled release of ciprofloxacin (CIP), and promotes fibroblast proliferation. The suggested approach is based on CIP loading to Zn<sup>2+</sup>-chelated CMC cryogel via the ligand exchange reaction. We have shown that, due to the strong binding of Zn<sup>2+</sup> to CMC, the antibacterial effect and toxicity to fibroblasts of CMC-Zn-CIP cryogels were mainly determined by the content of loaded CIP, which can be precisely controlled via Zn<sup>2+</sup> content in cryogel. CMC cryogels containing 20 mgZn/g can be loaded with CIP amounts sufficient to completely suppress the growth of hospital strain <i>Klebsiella oxytoca</i> with MIC of 0.125 µg/mL, while maintaining a fibroblast viability at the level of 85-90%.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 12","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675459/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial Zn<sup>2+</sup>-Carboxymethyl Chitosan Cryogel for Controlled Loading and Release of Ciprofloxacin via Coordination Bonds.\",\"authors\":\"Svetlana Bratskaya, Andrey Boroda, Tamara Bogomaz, Yuliya Privar, Mariya Maiorova, Daniil Malyshev, Anastasiia Shindina, Anna Skatova, Roman Goncharuk\",\"doi\":\"10.3390/gels10120841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The local application of broad-spectrum antibiotics via polymeric drug delivery systems is a promising alternative to their systemic administration in wound healing, prevention and treatment of infections associated with surgical implants. However, low and poorly controlled loading efficiency and 100% burst release are common problems for the materials with weak physical interaction between antibiotics and polymeric matrices. Here, we report a new multifunctional carboxymethyl chitosan (CMC) cryogel, which efficiently prevents bacterial adhesion to the surface, kills bacteria in the solution via controlled release of ciprofloxacin (CIP), and promotes fibroblast proliferation. The suggested approach is based on CIP loading to Zn<sup>2+</sup>-chelated CMC cryogel via the ligand exchange reaction. We have shown that, due to the strong binding of Zn<sup>2+</sup> to CMC, the antibacterial effect and toxicity to fibroblasts of CMC-Zn-CIP cryogels were mainly determined by the content of loaded CIP, which can be precisely controlled via Zn<sup>2+</sup> content in cryogel. CMC cryogels containing 20 mgZn/g can be loaded with CIP amounts sufficient to completely suppress the growth of hospital strain <i>Klebsiella oxytoca</i> with MIC of 0.125 µg/mL, while maintaining a fibroblast viability at the level of 85-90%.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"10 12\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675459/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels10120841\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10120841","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

通过聚合物给药系统局部应用广谱抗生素是一种有前途的替代系统给药,用于伤口愈合,预防和治疗与外科植入物相关的感染。然而,抗生素与聚合物基质之间物理相互作用弱的材料普遍存在加载效率低、控制不佳和100%爆发释放的问题。在此,我们报道了一种新的多功能羧甲基壳聚糖(CMC)低温凝胶,它能有效地阻止细菌粘附在表面,通过环丙沙星(CIP)的控释杀死溶液中的细菌,并促进成纤维细胞的增殖。建议的方法是通过配体交换反应将CIP负载到Zn2+螯合CMC冷冻凝胶上。我们已经证明,由于Zn2+与CMC的强结合,CMC- zn -CIP冷冻液的抑菌效果和对成纤维细胞的毒性主要取决于负载CIP的含量,而CIP的含量可以通过冷冻凝胶中Zn2+的含量来精确控制。含20 mgZn/g的CMC冷冻液,其CIP载量足以完全抑制MIC为0.125µg/mL的医院克雷伯菌的生长,同时使成纤维细胞存活率维持在85-90%的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antimicrobial Zn2+-Carboxymethyl Chitosan Cryogel for Controlled Loading and Release of Ciprofloxacin via Coordination Bonds.

The local application of broad-spectrum antibiotics via polymeric drug delivery systems is a promising alternative to their systemic administration in wound healing, prevention and treatment of infections associated with surgical implants. However, low and poorly controlled loading efficiency and 100% burst release are common problems for the materials with weak physical interaction between antibiotics and polymeric matrices. Here, we report a new multifunctional carboxymethyl chitosan (CMC) cryogel, which efficiently prevents bacterial adhesion to the surface, kills bacteria in the solution via controlled release of ciprofloxacin (CIP), and promotes fibroblast proliferation. The suggested approach is based on CIP loading to Zn2+-chelated CMC cryogel via the ligand exchange reaction. We have shown that, due to the strong binding of Zn2+ to CMC, the antibacterial effect and toxicity to fibroblasts of CMC-Zn-CIP cryogels were mainly determined by the content of loaded CIP, which can be precisely controlled via Zn2+ content in cryogel. CMC cryogels containing 20 mgZn/g can be loaded with CIP amounts sufficient to completely suppress the growth of hospital strain Klebsiella oxytoca with MIC of 0.125 µg/mL, while maintaining a fibroblast viability at the level of 85-90%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信