{"title":"Violaceoid F通过新机制抑制CRM1诱导FOXO3a核易位,抑制HeLa细胞生长。","authors":"Nobumoto Watanabe, Emiko Sanada, Akiko Okano, Toshihiko Nogawa, Ngit Shin Lai, Yui Mazaki, Makoto Muroi, Yoko Yashiroda, Minoru Yoshida, Hiroyuki Osada","doi":"10.1002/1873-3468.15085","DOIUrl":null,"url":null,"abstract":"<p>FOXO3a is a transcription factor involved in cell growth inhibition and apoptosis. FOXO3a is localized in the cytoplasm in cancer cells, and its nuclear translocation by small molecules is expected to prevent cancer cell growth. In this study, we screened a fungal broth library in HeLa cells using fluorescently labeled FOXO3a and an AI-based imaging system. We identified violaceoid F, which translocates FOXO3a into the nucleus by inhibiting CRM1, which is responsible for nuclear protein export. Violaceoid F was observed to target the reactive cysteine of CRM1 through its α, β-epoxyketone. However, because violaceoid F did not inhibit Crm1 in fission yeast cells, it seems to target cysteine residue(s) other than Cys528 of human CRM1 which are not targeted by other known CRM1 inhibitors, indicating that violaceoid F inhibits CRM1 <i>via</i> a novel mechanism.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"599 5","pages":"755-765"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Violaceoid F induces nuclear translocation of FOXO3a by inhibiting CRM1 via a novel mechanism and suppresses HeLa cell growth\",\"authors\":\"Nobumoto Watanabe, Emiko Sanada, Akiko Okano, Toshihiko Nogawa, Ngit Shin Lai, Yui Mazaki, Makoto Muroi, Yoko Yashiroda, Minoru Yoshida, Hiroyuki Osada\",\"doi\":\"10.1002/1873-3468.15085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>FOXO3a is a transcription factor involved in cell growth inhibition and apoptosis. FOXO3a is localized in the cytoplasm in cancer cells, and its nuclear translocation by small molecules is expected to prevent cancer cell growth. In this study, we screened a fungal broth library in HeLa cells using fluorescently labeled FOXO3a and an AI-based imaging system. We identified violaceoid F, which translocates FOXO3a into the nucleus by inhibiting CRM1, which is responsible for nuclear protein export. Violaceoid F was observed to target the reactive cysteine of CRM1 through its α, β-epoxyketone. However, because violaceoid F did not inhibit Crm1 in fission yeast cells, it seems to target cysteine residue(s) other than Cys528 of human CRM1 which are not targeted by other known CRM1 inhibitors, indicating that violaceoid F inhibits CRM1 <i>via</i> a novel mechanism.</p>\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\"599 5\",\"pages\":\"755-765\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/1873-3468.15085\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/1873-3468.15085","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Violaceoid F induces nuclear translocation of FOXO3a by inhibiting CRM1 via a novel mechanism and suppresses HeLa cell growth
FOXO3a is a transcription factor involved in cell growth inhibition and apoptosis. FOXO3a is localized in the cytoplasm in cancer cells, and its nuclear translocation by small molecules is expected to prevent cancer cell growth. In this study, we screened a fungal broth library in HeLa cells using fluorescently labeled FOXO3a and an AI-based imaging system. We identified violaceoid F, which translocates FOXO3a into the nucleus by inhibiting CRM1, which is responsible for nuclear protein export. Violaceoid F was observed to target the reactive cysteine of CRM1 through its α, β-epoxyketone. However, because violaceoid F did not inhibit Crm1 in fission yeast cells, it seems to target cysteine residue(s) other than Cys528 of human CRM1 which are not targeted by other known CRM1 inhibitors, indicating that violaceoid F inhibits CRM1 via a novel mechanism.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.