{"title":"基于残差神经网络的撞击飞溅和飞点自动识别。","authors":"Lihong Chen , Yaoren Zhu , Chuang Ma , Zhou Lyu","doi":"10.1016/j.forsciint.2024.112354","DOIUrl":null,"url":null,"abstract":"<div><div>In criminal investigations, distinguishing between impact spatters and fly spots presents a challenge due to their morphological similarities. Traditional methods of bloodstain pattern analysis (BPA) rely significantly on the expertise of professional examiners, which can result in limitations including low identification efficiency, high misjudgment rates, and susceptibility to external disturbances. To enhance the accuracy and scientific rigor of identifying impact spatters and fly spots, this study employed artificial intelligence techniques in image recognition and transfer learning. Two types of bloodstains obtained from simulation experiments were utilized as datasets, and a pre-trained neural network, ResNet-18, was employed for feature extraction. The original fully connected layer was replaced, and a new fully connected layer with a dimensionality of 2 was introduced to fulfil the task requirements. The results demonstrate that the transfer learning network model, based on ResNet-18, achieved a maximum accuracy of 93 % in morphologically identifying impact spatters and fly spots. The objective is to assist crime scene investigators and BPA analysts to identify bloodstains at homicide scenes conveniently, rapidly and accurately, thereby furnishing scientific evidence for scene reconstruction and advancing BPA toward intelligent practices.</div></div>","PeriodicalId":12341,"journal":{"name":"Forensic science international","volume":"367 ","pages":"Article 112354"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated identification of impact spatters and fly spots with a residual neural network\",\"authors\":\"Lihong Chen , Yaoren Zhu , Chuang Ma , Zhou Lyu\",\"doi\":\"10.1016/j.forsciint.2024.112354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In criminal investigations, distinguishing between impact spatters and fly spots presents a challenge due to their morphological similarities. Traditional methods of bloodstain pattern analysis (BPA) rely significantly on the expertise of professional examiners, which can result in limitations including low identification efficiency, high misjudgment rates, and susceptibility to external disturbances. To enhance the accuracy and scientific rigor of identifying impact spatters and fly spots, this study employed artificial intelligence techniques in image recognition and transfer learning. Two types of bloodstains obtained from simulation experiments were utilized as datasets, and a pre-trained neural network, ResNet-18, was employed for feature extraction. The original fully connected layer was replaced, and a new fully connected layer with a dimensionality of 2 was introduced to fulfil the task requirements. The results demonstrate that the transfer learning network model, based on ResNet-18, achieved a maximum accuracy of 93 % in morphologically identifying impact spatters and fly spots. The objective is to assist crime scene investigators and BPA analysts to identify bloodstains at homicide scenes conveniently, rapidly and accurately, thereby furnishing scientific evidence for scene reconstruction and advancing BPA toward intelligent practices.</div></div>\",\"PeriodicalId\":12341,\"journal\":{\"name\":\"Forensic science international\",\"volume\":\"367 \",\"pages\":\"Article 112354\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic science international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379073824004365\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic science international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379073824004365","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
Automated identification of impact spatters and fly spots with a residual neural network
In criminal investigations, distinguishing between impact spatters and fly spots presents a challenge due to their morphological similarities. Traditional methods of bloodstain pattern analysis (BPA) rely significantly on the expertise of professional examiners, which can result in limitations including low identification efficiency, high misjudgment rates, and susceptibility to external disturbances. To enhance the accuracy and scientific rigor of identifying impact spatters and fly spots, this study employed artificial intelligence techniques in image recognition and transfer learning. Two types of bloodstains obtained from simulation experiments were utilized as datasets, and a pre-trained neural network, ResNet-18, was employed for feature extraction. The original fully connected layer was replaced, and a new fully connected layer with a dimensionality of 2 was introduced to fulfil the task requirements. The results demonstrate that the transfer learning network model, based on ResNet-18, achieved a maximum accuracy of 93 % in morphologically identifying impact spatters and fly spots. The objective is to assist crime scene investigators and BPA analysts to identify bloodstains at homicide scenes conveniently, rapidly and accurately, thereby furnishing scientific evidence for scene reconstruction and advancing BPA toward intelligent practices.
期刊介绍:
Forensic Science International is the flagship journal in the prestigious Forensic Science International family, publishing the most innovative, cutting-edge, and influential contributions across the forensic sciences. Fields include: forensic pathology and histochemistry, chemistry, biochemistry and toxicology, biology, serology, odontology, psychiatry, anthropology, digital forensics, the physical sciences, firearms, and document examination, as well as investigations of value to public health in its broadest sense, and the important marginal area where science and medicine interact with the law.
The journal publishes:
Case Reports
Commentaries
Letters to the Editor
Original Research Papers (Regular Papers)
Rapid Communications
Review Articles
Technical Notes.