Dina Louis, Christianne Mounir Zaki Rizkalla, Amira Rashad
{"title":"立方体体作为呋喃妥因重新定位的递送系统在乳腺癌治疗中的应用。","authors":"Dina Louis, Christianne Mounir Zaki Rizkalla, Amira Rashad","doi":"10.2147/DDDT.S499068","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Nitrofurantoin (NITRO), a long-standing antibiotic to treat urinary tract infections, is activated by Nitro reductases. This activation mechanism has led to its exploration for repositioning applications in controlling and treating breast cancer, which express a Nitro reductase gene.</p><p><strong>Methods: </strong>NITRO Cubosomes were developed using hot homogenization according to 2<sup>3</sup>-full factorial design. The factors studied included the ratio of drug to oily phase (1:10 and 2:10), the ratio of oily to aqueous phase (1:10 and 1:5), and the ratio of Glyceryl mono-oleate (GMO) to Poloxamer 407 (PX407) (0.25:1 and 0.5:1). A total of 8 systems were proposed and evaluated by measuring particle size, zeta potential, polydispersity index, and percentage of entrapment efficiency.</p><p><strong>Results: </strong>S6 (1:10 drug: oily phase, 1:5 oily: aqueous phase and 0.5:1 GMO: PX407) with particle size 45.5 ±c1.1 nm and an entrapment efficiency of 98.6 ± 1.8% exhibited highest desirability and was selected for further analysis. The morphology of S6 was examined using TEM microscopy. The activation of NITRO from S6 reflected on intracellular viability of MCF-7 breast cancer cell line was investigated by an MTT assay. The findings indicated that S6 had the lowest IC50 value (83.99 ± 0.15 μg g/mL) compared to Free NITRO (174.54 ± 1.36 μg g/mL), suggesting enhanced efficacy compared to free NITRO.</p><p><strong>Conclusion: </strong>Nitrofurantoin cubosomes can be candidates for repositioning in breast cancer management after encouraging further stability and in-vivo studies.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"18 ","pages":"6173-6184"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668685/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cubosomes as Delivery System to Repositioning Nitrofurantoin in Breast Cancer Management.\",\"authors\":\"Dina Louis, Christianne Mounir Zaki Rizkalla, Amira Rashad\",\"doi\":\"10.2147/DDDT.S499068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Nitrofurantoin (NITRO), a long-standing antibiotic to treat urinary tract infections, is activated by Nitro reductases. This activation mechanism has led to its exploration for repositioning applications in controlling and treating breast cancer, which express a Nitro reductase gene.</p><p><strong>Methods: </strong>NITRO Cubosomes were developed using hot homogenization according to 2<sup>3</sup>-full factorial design. The factors studied included the ratio of drug to oily phase (1:10 and 2:10), the ratio of oily to aqueous phase (1:10 and 1:5), and the ratio of Glyceryl mono-oleate (GMO) to Poloxamer 407 (PX407) (0.25:1 and 0.5:1). A total of 8 systems were proposed and evaluated by measuring particle size, zeta potential, polydispersity index, and percentage of entrapment efficiency.</p><p><strong>Results: </strong>S6 (1:10 drug: oily phase, 1:5 oily: aqueous phase and 0.5:1 GMO: PX407) with particle size 45.5 ±c1.1 nm and an entrapment efficiency of 98.6 ± 1.8% exhibited highest desirability and was selected for further analysis. The morphology of S6 was examined using TEM microscopy. The activation of NITRO from S6 reflected on intracellular viability of MCF-7 breast cancer cell line was investigated by an MTT assay. The findings indicated that S6 had the lowest IC50 value (83.99 ± 0.15 μg g/mL) compared to Free NITRO (174.54 ± 1.36 μg g/mL), suggesting enhanced efficacy compared to free NITRO.</p><p><strong>Conclusion: </strong>Nitrofurantoin cubosomes can be candidates for repositioning in breast cancer management after encouraging further stability and in-vivo studies.</p>\",\"PeriodicalId\":11290,\"journal\":{\"name\":\"Drug Design, Development and Therapy\",\"volume\":\"18 \",\"pages\":\"6173-6184\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668685/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Design, Development and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/DDDT.S499068\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S499068","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Cubosomes as Delivery System to Repositioning Nitrofurantoin in Breast Cancer Management.
Purpose: Nitrofurantoin (NITRO), a long-standing antibiotic to treat urinary tract infections, is activated by Nitro reductases. This activation mechanism has led to its exploration for repositioning applications in controlling and treating breast cancer, which express a Nitro reductase gene.
Methods: NITRO Cubosomes were developed using hot homogenization according to 23-full factorial design. The factors studied included the ratio of drug to oily phase (1:10 and 2:10), the ratio of oily to aqueous phase (1:10 and 1:5), and the ratio of Glyceryl mono-oleate (GMO) to Poloxamer 407 (PX407) (0.25:1 and 0.5:1). A total of 8 systems were proposed and evaluated by measuring particle size, zeta potential, polydispersity index, and percentage of entrapment efficiency.
Results: S6 (1:10 drug: oily phase, 1:5 oily: aqueous phase and 0.5:1 GMO: PX407) with particle size 45.5 ±c1.1 nm and an entrapment efficiency of 98.6 ± 1.8% exhibited highest desirability and was selected for further analysis. The morphology of S6 was examined using TEM microscopy. The activation of NITRO from S6 reflected on intracellular viability of MCF-7 breast cancer cell line was investigated by an MTT assay. The findings indicated that S6 had the lowest IC50 value (83.99 ± 0.15 μg g/mL) compared to Free NITRO (174.54 ± 1.36 μg g/mL), suggesting enhanced efficacy compared to free NITRO.
Conclusion: Nitrofurantoin cubosomes can be candidates for repositioning in breast cancer management after encouraging further stability and in-vivo studies.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.