结合粒子群优化和机器学习算法的西班牙地区精神分裂症患者再入院预测建模。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Susel Góngora Alonso, Isabel Herrera Montano, Isabel De la Torre Díez, Manuel Franco-Martín, Mohammed Amoon, Jesús-Angel Román-Gallego, María-Luisa Pérez-Delgado
{"title":"结合粒子群优化和机器学习算法的西班牙地区精神分裂症患者再入院预测建模。","authors":"Susel Góngora Alonso, Isabel Herrera Montano, Isabel De la Torre Díez, Manuel Franco-Martín, Mohammed Amoon, Jesús-Angel Román-Gallego, María-Luisa Pérez-Delgado","doi":"10.3390/biomimetics9120752","DOIUrl":null,"url":null,"abstract":"<p><p>Readmissions are an indicator of hospital care quality; a high readmission rate is associated with adverse outcomes. This leads to an increase in healthcare costs and quality of life for patients. Developing predictive models for hospital readmissions provides opportunities to select treatments and implement preventive measures. The aim of this study is to develop predictive models for the readmission risk of patients with schizophrenia, combining the particle swarm optimization (PSO) algorithm with machine learning classification algorithms. The database used in the study includes a total of 6089 readmission records of patients with schizophrenia. These records were collected from 11 public hospitals in Castilla and León, Spain, in the period 2005-2015. The results of the study show that the Random Forest algorithm combined with PSO achieved the best results across the evaluated performance metrics: <i>AUC</i> = 0.860, <i>recall</i> = 0.959, <i>accuracy</i> = 0.844, and <i>F1-score</i> = 0.907. The development of these new models contributes to -improving patient care. Additionally, they enable preventive measures to reduce costs in healthcare systems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673248/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predictive Modeling of Hospital Readmission of Schizophrenic Patients in a Spanish Region Combining Particle Swarm Optimization and Machine Learning Algorithms.\",\"authors\":\"Susel Góngora Alonso, Isabel Herrera Montano, Isabel De la Torre Díez, Manuel Franco-Martín, Mohammed Amoon, Jesús-Angel Román-Gallego, María-Luisa Pérez-Delgado\",\"doi\":\"10.3390/biomimetics9120752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Readmissions are an indicator of hospital care quality; a high readmission rate is associated with adverse outcomes. This leads to an increase in healthcare costs and quality of life for patients. Developing predictive models for hospital readmissions provides opportunities to select treatments and implement preventive measures. The aim of this study is to develop predictive models for the readmission risk of patients with schizophrenia, combining the particle swarm optimization (PSO) algorithm with machine learning classification algorithms. The database used in the study includes a total of 6089 readmission records of patients with schizophrenia. These records were collected from 11 public hospitals in Castilla and León, Spain, in the period 2005-2015. The results of the study show that the Random Forest algorithm combined with PSO achieved the best results across the evaluated performance metrics: <i>AUC</i> = 0.860, <i>recall</i> = 0.959, <i>accuracy</i> = 0.844, and <i>F1-score</i> = 0.907. The development of these new models contributes to -improving patient care. Additionally, they enable preventive measures to reduce costs in healthcare systems.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"9 12\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673248/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9120752\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9120752","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

再入院率是医院护理质量的一个指标;高再入院率与不良结果相关。这导致医疗保健成本和患者生活质量的增加。开发再入院预测模型为选择治疗方法和实施预防措施提供了机会。本研究的目的是将粒子群优化(PSO)算法与机器学习分类算法相结合,建立精神分裂症患者再入院风险的预测模型。研究中使用的数据库共包括6089例精神分裂症患者的再入院记录。这些记录是在2005-2015年期间从西班牙卡斯蒂利亚和León的11家公立医院收集的。研究结果表明,随机森林算法结合粒子群算法在评价的性能指标上取得了最好的结果:AUC = 0.860,召回率= 0.959,准确率= 0.844,F1-score = 0.907。这些新模式的发展有助于改善病人的护理。此外,它们使预防措施能够降低医疗保健系统的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Modeling of Hospital Readmission of Schizophrenic Patients in a Spanish Region Combining Particle Swarm Optimization and Machine Learning Algorithms.

Readmissions are an indicator of hospital care quality; a high readmission rate is associated with adverse outcomes. This leads to an increase in healthcare costs and quality of life for patients. Developing predictive models for hospital readmissions provides opportunities to select treatments and implement preventive measures. The aim of this study is to develop predictive models for the readmission risk of patients with schizophrenia, combining the particle swarm optimization (PSO) algorithm with machine learning classification algorithms. The database used in the study includes a total of 6089 readmission records of patients with schizophrenia. These records were collected from 11 public hospitals in Castilla and León, Spain, in the period 2005-2015. The results of the study show that the Random Forest algorithm combined with PSO achieved the best results across the evaluated performance metrics: AUC = 0.860, recall = 0.959, accuracy = 0.844, and F1-score = 0.907. The development of these new models contributes to -improving patient care. Additionally, they enable preventive measures to reduce costs in healthcare systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信