一种改进的蜘蛛黄蜂优化算法用于无人机三维路径规划。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Haijun Liang, Wenhai Hu, Lifei Wang, Ke Gong, Yuxi Qian, Longchao Li
{"title":"一种改进的蜘蛛黄蜂优化算法用于无人机三维路径规划。","authors":"Haijun Liang, Wenhai Hu, Lifei Wang, Ke Gong, Yuxi Qian, Longchao Li","doi":"10.3390/biomimetics9120765","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes an Improved Spider Wasp Optimizer (ISWO) to address inaccuracies in calculating the population (N) during iterations of the SWO algorithm. By innovating the population iteration formula and integrating the advantages of Differential Evolution and the Crayfish Optimization Algorithm, along with introducing an opposition-based learning strategy, ISWO accelerates convergence. The adaptive parameters trade-off probability (TR) and crossover probability (Cr) are dynamically updated to balance the exploration and exploitation phases. In each generation, ISWO optimizes individual positions using Lévy flights, DE's mutation, and crossover operations, and COA's adaptive update mechanisms. The OBL strategy is applied every 10 generations to enhance population diversity. As the iterations progress, the population size gradually decreases, ultimately yielding the optimal solution and recording the convergence process. The algorithm's performance is tested using the 2017 test set, modeling a mountainous environment with a Gaussian function model. Under constraint conditions, the objective function is updated to establish a mathematical model for UAV flight. The minimal cost for obstacle-avoiding flight within the specified airspace is obtained using the fitness function, and the flight path is smoothed through cubic spline interpolation. Overall, ISWO generates high-quality, smooth paths with fewer iterations, overcoming premature convergence and the insufficient local search capabilities of traditional genetic algorithms, adapting to complex terrains, and providing an efficient and reliable solution.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673209/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Improved Spider Wasp Optimizer for UAV Three-Dimensional Path Planning.\",\"authors\":\"Haijun Liang, Wenhai Hu, Lifei Wang, Ke Gong, Yuxi Qian, Longchao Li\",\"doi\":\"10.3390/biomimetics9120765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes an Improved Spider Wasp Optimizer (ISWO) to address inaccuracies in calculating the population (N) during iterations of the SWO algorithm. By innovating the population iteration formula and integrating the advantages of Differential Evolution and the Crayfish Optimization Algorithm, along with introducing an opposition-based learning strategy, ISWO accelerates convergence. The adaptive parameters trade-off probability (TR) and crossover probability (Cr) are dynamically updated to balance the exploration and exploitation phases. In each generation, ISWO optimizes individual positions using Lévy flights, DE's mutation, and crossover operations, and COA's adaptive update mechanisms. The OBL strategy is applied every 10 generations to enhance population diversity. As the iterations progress, the population size gradually decreases, ultimately yielding the optimal solution and recording the convergence process. The algorithm's performance is tested using the 2017 test set, modeling a mountainous environment with a Gaussian function model. Under constraint conditions, the objective function is updated to establish a mathematical model for UAV flight. The minimal cost for obstacle-avoiding flight within the specified airspace is obtained using the fitness function, and the flight path is smoothed through cubic spline interpolation. Overall, ISWO generates high-quality, smooth paths with fewer iterations, overcoming premature convergence and the insufficient local search capabilities of traditional genetic algorithms, adapting to complex terrains, and providing an efficient and reliable solution.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"9 12\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673209/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9120765\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9120765","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种改进的蜘蛛黄蜂优化器(ISWO),以解决在SWO算法迭代过程中计算种群(N)的不准确性。ISWO通过创新种群迭代公式,结合差分进化和小龙虾优化算法的优点,引入基于对立的学习策略,加快了收敛速度。动态更新自适应参数权衡概率(TR)和交叉概率(Cr),以平衡勘探和开采阶段。在每一代中,ISWO使用lsamvy飞行、DE的突变和交叉操作以及COA的自适应更新机制来优化个体位置。OBL战略每10代实施一次,以增强种群多样性。随着迭代的进行,种群规模逐渐减小,最终得到最优解并记录收敛过程。使用2017年的测试集对算法的性能进行了测试,使用高斯函数模型对山区环境进行了建模。在约束条件下,更新目标函数,建立无人机飞行数学模型。利用适应度函数求给定空域内避障飞行的最小代价,并通过三次样条插值对飞行路径进行平滑处理。总体而言,ISWO能够以较少的迭代次数生成高质量、光滑的路径,克服了传统遗传算法过早收敛和局部搜索能力不足的问题,适应复杂地形,提供了高效可靠的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Spider Wasp Optimizer for UAV Three-Dimensional Path Planning.

This paper proposes an Improved Spider Wasp Optimizer (ISWO) to address inaccuracies in calculating the population (N) during iterations of the SWO algorithm. By innovating the population iteration formula and integrating the advantages of Differential Evolution and the Crayfish Optimization Algorithm, along with introducing an opposition-based learning strategy, ISWO accelerates convergence. The adaptive parameters trade-off probability (TR) and crossover probability (Cr) are dynamically updated to balance the exploration and exploitation phases. In each generation, ISWO optimizes individual positions using Lévy flights, DE's mutation, and crossover operations, and COA's adaptive update mechanisms. The OBL strategy is applied every 10 generations to enhance population diversity. As the iterations progress, the population size gradually decreases, ultimately yielding the optimal solution and recording the convergence process. The algorithm's performance is tested using the 2017 test set, modeling a mountainous environment with a Gaussian function model. Under constraint conditions, the objective function is updated to establish a mathematical model for UAV flight. The minimal cost for obstacle-avoiding flight within the specified airspace is obtained using the fitness function, and the flight path is smoothed through cubic spline interpolation. Overall, ISWO generates high-quality, smooth paths with fewer iterations, overcoming premature convergence and the insufficient local search capabilities of traditional genetic algorithms, adapting to complex terrains, and providing an efficient and reliable solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信