探索病毒衣壳结构的3d打印自组装螺旋模型。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Donald Plante, Keegan Unzen, John R Jungck
{"title":"探索病毒衣壳结构的3d打印自组装螺旋模型。","authors":"Donald Plante, Keegan Unzen, John R Jungck","doi":"10.3390/biomimetics9120763","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents a novel application of additive manufacturing in the design of self-assembling helical viral capsids using 3D-printed components. Expanding on prior work with 3D-printed self-assembling spherical capsids, we developed helical models that integrate geometric parameters and magnetic interactions to mimic key features of the assembly process of helical viral capsids. Using dual-helix phyllotactic patterns and simplified electrostatic simulations, these models consistently self-assemble into a cylinder, providing unique insights into the structural organization and stability of helical capsids. This accessible 3D-printed approach demonstrates the potential of additive manufacturing for research in mesoscale self-assembling models and in the education of complex biological assembly processes, promoting hands-on exploration of viral architecture and self-assembly mechanisms.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673919/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D-Printed Self-Assembling Helical Models for Exploring Viral Capsid Structures.\",\"authors\":\"Donald Plante, Keegan Unzen, John R Jungck\",\"doi\":\"10.3390/biomimetics9120763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work presents a novel application of additive manufacturing in the design of self-assembling helical viral capsids using 3D-printed components. Expanding on prior work with 3D-printed self-assembling spherical capsids, we developed helical models that integrate geometric parameters and magnetic interactions to mimic key features of the assembly process of helical viral capsids. Using dual-helix phyllotactic patterns and simplified electrostatic simulations, these models consistently self-assemble into a cylinder, providing unique insights into the structural organization and stability of helical capsids. This accessible 3D-printed approach demonstrates the potential of additive manufacturing for research in mesoscale self-assembling models and in the education of complex biological assembly processes, promoting hands-on exploration of viral architecture and self-assembly mechanisms.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"9 12\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673919/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9120763\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9120763","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了增材制造在使用3d打印组件设计自组装螺旋病毒衣壳中的新应用。在之前的3d打印自组装球形衣壳工作的基础上,我们开发了螺旋模型,该模型集成了几何参数和磁相互作用,以模拟螺旋病毒衣壳组装过程的关键特征。利用双螺旋层序模式和简化的静电模拟,这些模型始终自组装成一个圆柱体,为螺旋衣壳的结构组织和稳定性提供了独特的见解。这种可访问的3d打印方法展示了增材制造在中尺度自组装模型研究和复杂生物组装过程教育方面的潜力,促进了对病毒结构和自组装机制的动手探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D-Printed Self-Assembling Helical Models for Exploring Viral Capsid Structures.

This work presents a novel application of additive manufacturing in the design of self-assembling helical viral capsids using 3D-printed components. Expanding on prior work with 3D-printed self-assembling spherical capsids, we developed helical models that integrate geometric parameters and magnetic interactions to mimic key features of the assembly process of helical viral capsids. Using dual-helix phyllotactic patterns and simplified electrostatic simulations, these models consistently self-assemble into a cylinder, providing unique insights into the structural organization and stability of helical capsids. This accessible 3D-printed approach demonstrates the potential of additive manufacturing for research in mesoscale self-assembling models and in the education of complex biological assembly processes, promoting hands-on exploration of viral architecture and self-assembly mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信