基于双曲正弦余弦改进的胡桃夹子优化算法用于无人机路径规划。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Shuhao Jiang, Shengliang Cui, Haoran Song, Yizi Lu, Yong Zhang
{"title":"基于双曲正弦余弦改进的胡桃夹子优化算法用于无人机路径规划。","authors":"Shuhao Jiang, Shengliang Cui, Haoran Song, Yizi Lu, Yong Zhang","doi":"10.3390/biomimetics9120757","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) path planning is a crucial technology for ensuring the efficient and safe flight of UAVs in complex environments. Traditional path planning algorithms often find it challenging to navigate complex obstacle environments, making it challenging to quickly identify the optimal path. To address these challenges, this paper introduces a Nutcracker Optimizer integrated with Hyperbolic Sine-Cosine (ISCHNOA). First, the exploitation process of the sinh cosh optimizer is incorporated into the foraging strategy to enhance the efficiency of nutcracker in locating high-quality food sources within the search area. Secondly, a nonlinear function is designed to improve the algorithm's convergence speed. Finally, a sinh cosh optimizer that incorporates historical positions and dynamic factors is introduced to enhance the influence of the optimal position on the search process, thereby improving the accuracy of the nutcracker in retrieving stored food. In this paper, the performance of the ISCHNOA algorithm is tested using 14 classical benchmark test functions as well as the CEC2014 and CEC2020 suites and applied to UAV path planning models. The experimental results demonstrate that the ISCHNOA algorithm outperforms the other algorithms across the three test suites, with the total cost of the planned UAV paths being lower.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673821/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced Nutcracker Optimization Algorithm with Hyperbolic Sine-Cosine Improvement for UAV Path Planning.\",\"authors\":\"Shuhao Jiang, Shengliang Cui, Haoran Song, Yizi Lu, Yong Zhang\",\"doi\":\"10.3390/biomimetics9120757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) path planning is a crucial technology for ensuring the efficient and safe flight of UAVs in complex environments. Traditional path planning algorithms often find it challenging to navigate complex obstacle environments, making it challenging to quickly identify the optimal path. To address these challenges, this paper introduces a Nutcracker Optimizer integrated with Hyperbolic Sine-Cosine (ISCHNOA). First, the exploitation process of the sinh cosh optimizer is incorporated into the foraging strategy to enhance the efficiency of nutcracker in locating high-quality food sources within the search area. Secondly, a nonlinear function is designed to improve the algorithm's convergence speed. Finally, a sinh cosh optimizer that incorporates historical positions and dynamic factors is introduced to enhance the influence of the optimal position on the search process, thereby improving the accuracy of the nutcracker in retrieving stored food. In this paper, the performance of the ISCHNOA algorithm is tested using 14 classical benchmark test functions as well as the CEC2014 and CEC2020 suites and applied to UAV path planning models. The experimental results demonstrate that the ISCHNOA algorithm outperforms the other algorithms across the three test suites, with the total cost of the planned UAV paths being lower.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"9 12\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673821/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9120757\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9120757","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

三维路径规划是保证无人机在复杂环境下高效安全飞行的关键技术。传统的路径规划算法往往难以在复杂的障碍物环境中导航,从而难以快速识别最优路径。为了解决这些挑战,本文介绍了一个集成了双曲正弦余弦(ISCHNOA)的胡桃夹子优化器。首先,将胡桃夹子优化器的开发过程融入到觅食策略中,提高了胡桃夹子在搜索区域内定位优质食物源的效率。其次,设计非线性函数提高算法的收敛速度;最后,引入历史位置和动态因素相结合的寻优器,增强最优位置对寻优过程的影响,从而提高胡桃夹子检索储存食物的精度。本文利用14个经典基准测试函数以及CEC2014和CEC2020套件对ISCHNOA算法的性能进行了测试,并将其应用于无人机路径规划模型。实验结果表明,ISCHNOA算法在三个测试套件中均优于其他算法,且规划无人机路径的总成本较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Nutcracker Optimization Algorithm with Hyperbolic Sine-Cosine Improvement for UAV Path Planning.

Three-dimensional (3D) path planning is a crucial technology for ensuring the efficient and safe flight of UAVs in complex environments. Traditional path planning algorithms often find it challenging to navigate complex obstacle environments, making it challenging to quickly identify the optimal path. To address these challenges, this paper introduces a Nutcracker Optimizer integrated with Hyperbolic Sine-Cosine (ISCHNOA). First, the exploitation process of the sinh cosh optimizer is incorporated into the foraging strategy to enhance the efficiency of nutcracker in locating high-quality food sources within the search area. Secondly, a nonlinear function is designed to improve the algorithm's convergence speed. Finally, a sinh cosh optimizer that incorporates historical positions and dynamic factors is introduced to enhance the influence of the optimal position on the search process, thereby improving the accuracy of the nutcracker in retrieving stored food. In this paper, the performance of the ISCHNOA algorithm is tested using 14 classical benchmark test functions as well as the CEC2014 and CEC2020 suites and applied to UAV path planning models. The experimental results demonstrate that the ISCHNOA algorithm outperforms the other algorithms across the three test suites, with the total cost of the planned UAV paths being lower.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信