{"title":"利用有节奏的触觉提示在手臂摆动训练中提高老年人的步态速度。","authors":"Ines Khiyara, Ben Sidaway, Babak Hejrati","doi":"10.1007/s10439-024-03669-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Current gait rehabilitation protocols for older adults typically attempt to effect changes in leg movements, while the role of arm movements is often ignored despite evidence of the neurological coupling of the upper and lower extremities. In the present work, we examine the effectiveness of a novel wearable haptic cueing system that targets arm swing to improve various gait parameters in older adults.</p><p><strong>Methods: </strong>Twenty participants ( <math><mrow><mi>M</mi> <mo>=</mo> <mn>73.4</mn> <mo>±</mo> <mn>6.2</mn></mrow> </math> years) were recruited to analyze their gait during normal and fast walking without haptic cueing. Vibrotactors attached to the arms were then used to give haptic cues that were designed to either increase or decrease arm swing cycle time. The effects of such cueing on gait symmetry and spatiotemporal parameters were then analyzed.</p><p><strong>Results: </strong>The presentation of the haptic cues significantly altered arm swing cycle time resulting in an increase in gait speed of 18.2% when arm cycle time was decreased and a 12.3% decrease in gait speed when arm cycle time was lengthened. The response to haptic cues was immediate, emphasizing the tight coupling of the arm and legs in the production of gait. Spatiotemporal analysis revealed improvements in gait parameters and symmetry metrics, indicating enhanced coordination between limbs when using tactile cues. Subjective evaluations further supported the system's potential for gait training.</p><p><strong>Conclusion: </strong>The results reveal the significant potential of the haptic cueing system to modulate gait through arm swing manipulation, leveraging interlimb neural coupling. This aligns with the growing need for home-based gait training solutions, particularly for the older population, and presents a novel approach that could be integrated into current gait rehabilitation practices.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Rhythmic Haptic Cueing in Arm Swing Training to Improve Gait Speed Among Older Adults.\",\"authors\":\"Ines Khiyara, Ben Sidaway, Babak Hejrati\",\"doi\":\"10.1007/s10439-024-03669-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Current gait rehabilitation protocols for older adults typically attempt to effect changes in leg movements, while the role of arm movements is often ignored despite evidence of the neurological coupling of the upper and lower extremities. In the present work, we examine the effectiveness of a novel wearable haptic cueing system that targets arm swing to improve various gait parameters in older adults.</p><p><strong>Methods: </strong>Twenty participants ( <math><mrow><mi>M</mi> <mo>=</mo> <mn>73.4</mn> <mo>±</mo> <mn>6.2</mn></mrow> </math> years) were recruited to analyze their gait during normal and fast walking without haptic cueing. Vibrotactors attached to the arms were then used to give haptic cues that were designed to either increase or decrease arm swing cycle time. The effects of such cueing on gait symmetry and spatiotemporal parameters were then analyzed.</p><p><strong>Results: </strong>The presentation of the haptic cues significantly altered arm swing cycle time resulting in an increase in gait speed of 18.2% when arm cycle time was decreased and a 12.3% decrease in gait speed when arm cycle time was lengthened. The response to haptic cues was immediate, emphasizing the tight coupling of the arm and legs in the production of gait. Spatiotemporal analysis revealed improvements in gait parameters and symmetry metrics, indicating enhanced coordination between limbs when using tactile cues. Subjective evaluations further supported the system's potential for gait training.</p><p><strong>Conclusion: </strong>The results reveal the significant potential of the haptic cueing system to modulate gait through arm swing manipulation, leveraging interlimb neural coupling. This aligns with the growing need for home-based gait training solutions, particularly for the older population, and presents a novel approach that could be integrated into current gait rehabilitation practices.</p>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10439-024-03669-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03669-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Utilizing Rhythmic Haptic Cueing in Arm Swing Training to Improve Gait Speed Among Older Adults.
Purpose: Current gait rehabilitation protocols for older adults typically attempt to effect changes in leg movements, while the role of arm movements is often ignored despite evidence of the neurological coupling of the upper and lower extremities. In the present work, we examine the effectiveness of a novel wearable haptic cueing system that targets arm swing to improve various gait parameters in older adults.
Methods: Twenty participants ( years) were recruited to analyze their gait during normal and fast walking without haptic cueing. Vibrotactors attached to the arms were then used to give haptic cues that were designed to either increase or decrease arm swing cycle time. The effects of such cueing on gait symmetry and spatiotemporal parameters were then analyzed.
Results: The presentation of the haptic cues significantly altered arm swing cycle time resulting in an increase in gait speed of 18.2% when arm cycle time was decreased and a 12.3% decrease in gait speed when arm cycle time was lengthened. The response to haptic cues was immediate, emphasizing the tight coupling of the arm and legs in the production of gait. Spatiotemporal analysis revealed improvements in gait parameters and symmetry metrics, indicating enhanced coordination between limbs when using tactile cues. Subjective evaluations further supported the system's potential for gait training.
Conclusion: The results reveal the significant potential of the haptic cueing system to modulate gait through arm swing manipulation, leveraging interlimb neural coupling. This aligns with the growing need for home-based gait training solutions, particularly for the older population, and presents a novel approach that could be integrated into current gait rehabilitation practices.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.