阿魏酸酰胺衍生物的设计、合成、抗真菌和抗菌评价。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Qiang Fei, Yanbi Luo, Haijiang Chen, Wenneng Wu, Su Xu
{"title":"阿魏酸酰胺衍生物的设计、合成、抗真菌和抗菌评价。","authors":"Qiang Fei, Yanbi Luo, Haijiang Chen, Wenneng Wu, Su Xu","doi":"10.1007/s11030-024-11076-4","DOIUrl":null,"url":null,"abstract":"<p><p>Natural compounds' derivatives as lead structures could effectively solve plant disease problems. In this article, amide compounds and amide ester compounds were synthetized through ferulic acid as the parent nucleus structure, and their biological activities in vitro and in vivo were evaluated. Compound 1q was screened out as the one with the best activity performance toward Xanthomonas axonopodis pv. citri (Xac), which displayed the inhibition rate of 100% and the EC<sub>50</sub> as low as 4.56 μg/mL. The results of in vivo experiments on citrus leaves infected with Xac showed that compound 1q had a protective efficacy of 60.98% and a curative efficacy of 26.56%. The mechanism of action as well as molecular docking was previously studied using extracellular polysaccharide (EPS) content, bacterial membrane permeability, and scanning electron microscopy (SEM) observations. Experimental results show that compound 1q can become an antibacterial agent for preventing and managing plant diseases.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis, antifungal, and antibacterial evaluation of ferulic acid derivatives bearing amide moiety.\",\"authors\":\"Qiang Fei, Yanbi Luo, Haijiang Chen, Wenneng Wu, Su Xu\",\"doi\":\"10.1007/s11030-024-11076-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural compounds' derivatives as lead structures could effectively solve plant disease problems. In this article, amide compounds and amide ester compounds were synthetized through ferulic acid as the parent nucleus structure, and their biological activities in vitro and in vivo were evaluated. Compound 1q was screened out as the one with the best activity performance toward Xanthomonas axonopodis pv. citri (Xac), which displayed the inhibition rate of 100% and the EC<sub>50</sub> as low as 4.56 μg/mL. The results of in vivo experiments on citrus leaves infected with Xac showed that compound 1q had a protective efficacy of 60.98% and a curative efficacy of 26.56%. The mechanism of action as well as molecular docking was previously studied using extracellular polysaccharide (EPS) content, bacterial membrane permeability, and scanning electron microscopy (SEM) observations. Experimental results show that compound 1q can become an antibacterial agent for preventing and managing plant diseases.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11076-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11076-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

天然化合物衍生物作为先导结构可有效解决植物病害问题。本文以阿魏酸为母核结构合成了酰胺类化合物和酰胺类酯类化合物,并对其体外和体内生物活性进行了评价。经筛选,化合物1q对子午黄单胞菌的抑制效果最好。柠檬酸(Xac)的抑菌率为100%,EC50低至4.56 μg/mL。Xac侵染柑橘叶片的体内实验结果表明,化合物1q的保护效果为60.98%,治疗效果为26.56%。先前通过细胞外多糖(EPS)含量、细菌膜通透性和扫描电镜(SEM)观察研究了其作用机制和分子对接。实验结果表明,化合物1q可作为一种抗菌剂用于植物病害的防治。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, synthesis, antifungal, and antibacterial evaluation of ferulic acid derivatives bearing amide moiety.

Natural compounds' derivatives as lead structures could effectively solve plant disease problems. In this article, amide compounds and amide ester compounds were synthetized through ferulic acid as the parent nucleus structure, and their biological activities in vitro and in vivo were evaluated. Compound 1q was screened out as the one with the best activity performance toward Xanthomonas axonopodis pv. citri (Xac), which displayed the inhibition rate of 100% and the EC50 as low as 4.56 μg/mL. The results of in vivo experiments on citrus leaves infected with Xac showed that compound 1q had a protective efficacy of 60.98% and a curative efficacy of 26.56%. The mechanism of action as well as molecular docking was previously studied using extracellular polysaccharide (EPS) content, bacterial membrane permeability, and scanning electron microscopy (SEM) observations. Experimental results show that compound 1q can become an antibacterial agent for preventing and managing plant diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信