{"title":"十六烷基三甲基氯化铵(CTAC)及其配方漱口水降低单态和双态变形链球菌和白色念珠菌的传染性。","authors":"Ravichellam Sangavi, Ravi Jothi, Nambiraman Malligarjunan, Veerapandian Raja, Shunmugiah Karutha Pandian, Shanmugaraj Gowrishankar","doi":"10.1007/s12010-024-05119-7","DOIUrl":null,"url":null,"abstract":"<p><p>Early childhood caries (ECC), a severe form of dental caries, is exacerbated by the synergistic interaction between Streptococcus mutans and Candida albicans, leading to greater disease severity than their individual effects. This underscores the need for more targeted and potent therapeutic alternatives. Given the promising anti-infective properties of quaternary ammonium surfactants (QAS), this study explores the microbicidal properties of one such QAS, cetyltrimethylammonium chloride (CTAC), against both individual- and dual-species cultures of S. mutans and C. albicans for effective ECC treatment. Initially, the minimal inhibitory concentrations (MICs) of CTAC were determined to range from 4 to 8 µg/mL against S. mutans, C. albicans, and dual-species cultures. Time-kill kinetics, assessed via spot assays and spectrometry, demonstrated that CTAC completely eradicated both individual- and dual-species cultures within 30 min of exposure. Furthermore, at sub-MIC concentrations, CTAC effectively reduced biofilm formation and virulence traits in S. mutans (including acidogenicity and aciduricity) and C. albicans (including yeast-to-hyphal transition and filamentation). To explore therapeutic application, a mouthwash containing CTAC was formulated. The results showed that the formulated CTAC mouthwash was as effective at eradicating pathogens as a commercially available mouthwash containing 0.075% cetylpyridinium chloride (CPC). Moreover, the CTAC mouthwash maintained stable physicochemical characteristics and antimicrobial activity over 4 weeks. It exhibited rapid killing activity against pathogens, achieving efficacy within just 2 min of exposure. Fluorescence microscopy and SEM micrographs confirmed the strong biofilm eradication potential of the CTAC mouthwash. The non-toxic nature of the formulated mouthwash was validated using human buccal epithelial cells, and in vivo studies further demonstrated that CTAC mouthwash significantly reduced bacterial and fungal loads in Galleria mellonella. Overall, the findings of this study highlight the potential application of QAS-CTAC in the treatment of ECC.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cetyltrimethylammonium Chloride (CTAC) and Its Formulated Mouthwash Reduce the Infectivity of Streptococcus mutans and Candida albicans in Mono and Dual State.\",\"authors\":\"Ravichellam Sangavi, Ravi Jothi, Nambiraman Malligarjunan, Veerapandian Raja, Shunmugiah Karutha Pandian, Shanmugaraj Gowrishankar\",\"doi\":\"10.1007/s12010-024-05119-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early childhood caries (ECC), a severe form of dental caries, is exacerbated by the synergistic interaction between Streptococcus mutans and Candida albicans, leading to greater disease severity than their individual effects. This underscores the need for more targeted and potent therapeutic alternatives. Given the promising anti-infective properties of quaternary ammonium surfactants (QAS), this study explores the microbicidal properties of one such QAS, cetyltrimethylammonium chloride (CTAC), against both individual- and dual-species cultures of S. mutans and C. albicans for effective ECC treatment. Initially, the minimal inhibitory concentrations (MICs) of CTAC were determined to range from 4 to 8 µg/mL against S. mutans, C. albicans, and dual-species cultures. Time-kill kinetics, assessed via spot assays and spectrometry, demonstrated that CTAC completely eradicated both individual- and dual-species cultures within 30 min of exposure. Furthermore, at sub-MIC concentrations, CTAC effectively reduced biofilm formation and virulence traits in S. mutans (including acidogenicity and aciduricity) and C. albicans (including yeast-to-hyphal transition and filamentation). To explore therapeutic application, a mouthwash containing CTAC was formulated. The results showed that the formulated CTAC mouthwash was as effective at eradicating pathogens as a commercially available mouthwash containing 0.075% cetylpyridinium chloride (CPC). Moreover, the CTAC mouthwash maintained stable physicochemical characteristics and antimicrobial activity over 4 weeks. It exhibited rapid killing activity against pathogens, achieving efficacy within just 2 min of exposure. Fluorescence microscopy and SEM micrographs confirmed the strong biofilm eradication potential of the CTAC mouthwash. The non-toxic nature of the formulated mouthwash was validated using human buccal epithelial cells, and in vivo studies further demonstrated that CTAC mouthwash significantly reduced bacterial and fungal loads in Galleria mellonella. Overall, the findings of this study highlight the potential application of QAS-CTAC in the treatment of ECC.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05119-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05119-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cetyltrimethylammonium Chloride (CTAC) and Its Formulated Mouthwash Reduce the Infectivity of Streptococcus mutans and Candida albicans in Mono and Dual State.
Early childhood caries (ECC), a severe form of dental caries, is exacerbated by the synergistic interaction between Streptococcus mutans and Candida albicans, leading to greater disease severity than their individual effects. This underscores the need for more targeted and potent therapeutic alternatives. Given the promising anti-infective properties of quaternary ammonium surfactants (QAS), this study explores the microbicidal properties of one such QAS, cetyltrimethylammonium chloride (CTAC), against both individual- and dual-species cultures of S. mutans and C. albicans for effective ECC treatment. Initially, the minimal inhibitory concentrations (MICs) of CTAC were determined to range from 4 to 8 µg/mL against S. mutans, C. albicans, and dual-species cultures. Time-kill kinetics, assessed via spot assays and spectrometry, demonstrated that CTAC completely eradicated both individual- and dual-species cultures within 30 min of exposure. Furthermore, at sub-MIC concentrations, CTAC effectively reduced biofilm formation and virulence traits in S. mutans (including acidogenicity and aciduricity) and C. albicans (including yeast-to-hyphal transition and filamentation). To explore therapeutic application, a mouthwash containing CTAC was formulated. The results showed that the formulated CTAC mouthwash was as effective at eradicating pathogens as a commercially available mouthwash containing 0.075% cetylpyridinium chloride (CPC). Moreover, the CTAC mouthwash maintained stable physicochemical characteristics and antimicrobial activity over 4 weeks. It exhibited rapid killing activity against pathogens, achieving efficacy within just 2 min of exposure. Fluorescence microscopy and SEM micrographs confirmed the strong biofilm eradication potential of the CTAC mouthwash. The non-toxic nature of the formulated mouthwash was validated using human buccal epithelial cells, and in vivo studies further demonstrated that CTAC mouthwash significantly reduced bacterial and fungal loads in Galleria mellonella. Overall, the findings of this study highlight the potential application of QAS-CTAC in the treatment of ECC.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.