Rajeswari Ramasamy, Muthukumaran Azhaguchamy, Johnson Retnaraj Samuel Selvan Christyraj, Lalithalakshmi Kanagaraj
{"title":"研究马尾草提取物对MPP+诱导的SH-SY5Y人神经母细胞瘤细胞凋亡的神经保护作用。","authors":"Rajeswari Ramasamy, Muthukumaran Azhaguchamy, Johnson Retnaraj Samuel Selvan Christyraj, Lalithalakshmi Kanagaraj","doi":"10.1007/s13205-024-04185-2","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to assess the neuroprotective effects of the methanolic extract of <i>Sargassum wightii</i> against oxidative stress and cell death induced by neurotoxins MPP <sup>+</sup> in SH-SY5Y cells. Briefly, the methanolic extract of <i>S.wightii</i> decreased the cytotoxicity of MPP <sup>+</sup> in SH-SY5Y cells. Treatment with <i>S.wightii</i> extract at a concentration of 400 µg/ml resulted in a notable decrease in cell death, particularly in MPP <sup>+</sup> -induced cells. Flow cytometry analysis with annexin V/PI staining reveals apoptosis and necrosis in SH-SY5Y cell lines upon exposure to 1 mM of MPP <sup>+</sup> . However, 100-400 µg/ml concentrations of <i>S.wightii</i> extract effectively decrease apoptosis in SH-SY5Y cells. Furthermore, <i>S.wightii</i> inhibits caspase-3 activity, effectively shielding neuronal cells against MPP <sup>+</sup> -induced cell death. Mitochondrial membrane potential (MMP) assay using a JC-1 fluorescent probe indicates that the methanolic extract of <i>S.wightii</i> exhibits protective effects against MPP <sup>+</sup> -induced cell death and maintains mitochondrial membrane potential. Our results conclude that exposing SH-SY5Y cells to a methanolic extract of <i>S.wightii</i> could potentially increase the likelihood of inhibiting the cascade mechanism, stopping MPP<sup>+</sup>-induced apoptosis, and preventing the rupture of the mitochondrial membrane. However, the lack of low solubility and poor bioavailability reduce the therapeutic efficacy of <i>S.wightii</i>. Liposome-based drug delivery systems can improve the bioavailability and stability of bioactive compounds, enhancing their therapeutic potential. Hence, <i>S.wightii</i> may hold promise as an innovative treatment for neurological ailments.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"22"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668720/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating the neuroprotective properties of <i>Sargassum wightii</i> extract against MPP<sup>+</sup>-induced apoptosis in SH-SY5Y human neuroblastoma cells.\",\"authors\":\"Rajeswari Ramasamy, Muthukumaran Azhaguchamy, Johnson Retnaraj Samuel Selvan Christyraj, Lalithalakshmi Kanagaraj\",\"doi\":\"10.1007/s13205-024-04185-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to assess the neuroprotective effects of the methanolic extract of <i>Sargassum wightii</i> against oxidative stress and cell death induced by neurotoxins MPP <sup>+</sup> in SH-SY5Y cells. Briefly, the methanolic extract of <i>S.wightii</i> decreased the cytotoxicity of MPP <sup>+</sup> in SH-SY5Y cells. Treatment with <i>S.wightii</i> extract at a concentration of 400 µg/ml resulted in a notable decrease in cell death, particularly in MPP <sup>+</sup> -induced cells. Flow cytometry analysis with annexin V/PI staining reveals apoptosis and necrosis in SH-SY5Y cell lines upon exposure to 1 mM of MPP <sup>+</sup> . However, 100-400 µg/ml concentrations of <i>S.wightii</i> extract effectively decrease apoptosis in SH-SY5Y cells. Furthermore, <i>S.wightii</i> inhibits caspase-3 activity, effectively shielding neuronal cells against MPP <sup>+</sup> -induced cell death. Mitochondrial membrane potential (MMP) assay using a JC-1 fluorescent probe indicates that the methanolic extract of <i>S.wightii</i> exhibits protective effects against MPP <sup>+</sup> -induced cell death and maintains mitochondrial membrane potential. Our results conclude that exposing SH-SY5Y cells to a methanolic extract of <i>S.wightii</i> could potentially increase the likelihood of inhibiting the cascade mechanism, stopping MPP<sup>+</sup>-induced apoptosis, and preventing the rupture of the mitochondrial membrane. However, the lack of low solubility and poor bioavailability reduce the therapeutic efficacy of <i>S.wightii</i>. Liposome-based drug delivery systems can improve the bioavailability and stability of bioactive compounds, enhancing their therapeutic potential. Hence, <i>S.wightii</i> may hold promise as an innovative treatment for neurological ailments.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"15 1\",\"pages\":\"22\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668720/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04185-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04185-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Investigating the neuroprotective properties of Sargassum wightii extract against MPP+-induced apoptosis in SH-SY5Y human neuroblastoma cells.
This study aims to assess the neuroprotective effects of the methanolic extract of Sargassum wightii against oxidative stress and cell death induced by neurotoxins MPP + in SH-SY5Y cells. Briefly, the methanolic extract of S.wightii decreased the cytotoxicity of MPP + in SH-SY5Y cells. Treatment with S.wightii extract at a concentration of 400 µg/ml resulted in a notable decrease in cell death, particularly in MPP + -induced cells. Flow cytometry analysis with annexin V/PI staining reveals apoptosis and necrosis in SH-SY5Y cell lines upon exposure to 1 mM of MPP + . However, 100-400 µg/ml concentrations of S.wightii extract effectively decrease apoptosis in SH-SY5Y cells. Furthermore, S.wightii inhibits caspase-3 activity, effectively shielding neuronal cells against MPP + -induced cell death. Mitochondrial membrane potential (MMP) assay using a JC-1 fluorescent probe indicates that the methanolic extract of S.wightii exhibits protective effects against MPP + -induced cell death and maintains mitochondrial membrane potential. Our results conclude that exposing SH-SY5Y cells to a methanolic extract of S.wightii could potentially increase the likelihood of inhibiting the cascade mechanism, stopping MPP+-induced apoptosis, and preventing the rupture of the mitochondrial membrane. However, the lack of low solubility and poor bioavailability reduce the therapeutic efficacy of S.wightii. Liposome-based drug delivery systems can improve the bioavailability and stability of bioactive compounds, enhancing their therapeutic potential. Hence, S.wightii may hold promise as an innovative treatment for neurological ailments.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.