{"title":"明胶甲基丙烯酰水凝胶对fcε - ri诱导RBL-2H3细胞脱粒的抑制作用。","authors":"Haruna Horisaka, Satoru Yokawa, Ruriko Suzuki, Rin Emoto, Rino Maeda, Tadahide Furuno","doi":"10.1007/s12013-024-01657-3","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-extracellular matrix (ECM) interactions play multiple roles in developmental, physiological, and pathological processes. ECM stiffness substantially affects cellular morphology, migration, and function. In this study, we investigated the effect of ECM comprising gelatin methacryloyl (GelMA) on the activation of rat basophilic leukemia (RBL-2H3) cells, a model mast cell line. Maintenance of intracellular Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>i</sub>) elevation and subsequent degranulation, evoked by crosslinking the high-affinity IgE receptors (FcεRI), were significantly suppressed in RBL-2H3 cells on collagen-coated GelMA hydrogel than those on collagen-coated glass dishes and plastic wells. Thapsigargin and phorbol myristate acetate caused sustained [Ca<sup>2+</sup>]<sub>i</sub> increase and degranulation to a similar extent in cells on both GelMA hydrogel and plastic wells/glass dishes. F-actin was clearly accumulated along the periphery of RBL-2H3 cells in plane attached to glass, but not GelMA hydrogel, suggesting that the loose actin cytoskeleton of RBL-2H3 cells on GelMA hydrogel caused suppressive degranulation through unstable FcεRI aggregation.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of FcεRI-evoked Degranulation in RBL-2H3 Cells on Gelatin Methacryloyl Hydrogel.\",\"authors\":\"Haruna Horisaka, Satoru Yokawa, Ruriko Suzuki, Rin Emoto, Rino Maeda, Tadahide Furuno\",\"doi\":\"10.1007/s12013-024-01657-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell-extracellular matrix (ECM) interactions play multiple roles in developmental, physiological, and pathological processes. ECM stiffness substantially affects cellular morphology, migration, and function. In this study, we investigated the effect of ECM comprising gelatin methacryloyl (GelMA) on the activation of rat basophilic leukemia (RBL-2H3) cells, a model mast cell line. Maintenance of intracellular Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>i</sub>) elevation and subsequent degranulation, evoked by crosslinking the high-affinity IgE receptors (FcεRI), were significantly suppressed in RBL-2H3 cells on collagen-coated GelMA hydrogel than those on collagen-coated glass dishes and plastic wells. Thapsigargin and phorbol myristate acetate caused sustained [Ca<sup>2+</sup>]<sub>i</sub> increase and degranulation to a similar extent in cells on both GelMA hydrogel and plastic wells/glass dishes. F-actin was clearly accumulated along the periphery of RBL-2H3 cells in plane attached to glass, but not GelMA hydrogel, suggesting that the loose actin cytoskeleton of RBL-2H3 cells on GelMA hydrogel caused suppressive degranulation through unstable FcεRI aggregation.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01657-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01657-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Suppression of FcεRI-evoked Degranulation in RBL-2H3 Cells on Gelatin Methacryloyl Hydrogel.
Cell-extracellular matrix (ECM) interactions play multiple roles in developmental, physiological, and pathological processes. ECM stiffness substantially affects cellular morphology, migration, and function. In this study, we investigated the effect of ECM comprising gelatin methacryloyl (GelMA) on the activation of rat basophilic leukemia (RBL-2H3) cells, a model mast cell line. Maintenance of intracellular Ca2+ concentration ([Ca2+]i) elevation and subsequent degranulation, evoked by crosslinking the high-affinity IgE receptors (FcεRI), were significantly suppressed in RBL-2H3 cells on collagen-coated GelMA hydrogel than those on collagen-coated glass dishes and plastic wells. Thapsigargin and phorbol myristate acetate caused sustained [Ca2+]i increase and degranulation to a similar extent in cells on both GelMA hydrogel and plastic wells/glass dishes. F-actin was clearly accumulated along the periphery of RBL-2H3 cells in plane attached to glass, but not GelMA hydrogel, suggesting that the loose actin cytoskeleton of RBL-2H3 cells on GelMA hydrogel caused suppressive degranulation through unstable FcεRI aggregation.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.