{"title":"具有可调双钴协同位点的1D共价有机框架用于有效的CO2光还原。","authors":"Shu-Kun Xia, Yong Liu, Ruo-Meng Zhu, Jing-Dong Feng, Wang-Kang Han, Zhi-Guo Gu","doi":"10.1002/marc.202400780","DOIUrl":null,"url":null,"abstract":"<p><p>Diatomic catalysts enhance photocatalytic CO<sub>2</sub> reduction through synergistic effects. However, precisely regulating the distance between two catalytic centers to achieve synergistic catalysis poses significant challenges. In this study, a series of one-dimensional (1D) covalent organic frameworks (COFs) are designed with adjustable micropores to facilitate efficient CO<sub>2</sub> photoreduction. CO<sub>2</sub> molecules are anchored between dual-cobalt centers within micropores, thus effectively reducing their activation energy and initiating the photocatalytic process. Additionally, the formation of *COOH intermediates is significantly influenced by the coordination microenvironment around dual-cobalt sites. Notably, COF-Co-N<sub>4</sub> exhibited remarkable CO<sub>2</sub> photoreduction activity with a CO evolution rate of 110.3 µmol·g<sup>-1</sup>·h<sup>-1</sup>, which surpasses most of previously reported single-atom-site photocatalysts. Comprehensive characterization and density functional theory (DFT) calculations revealed that 1D COFs with dual-cobalt sites possess the ability to anchor CO<sub>2</sub> molecules, thereby enhancing the efficacy of synergistic catalysis. Simultaneously, COF-Co-N<sub>4</sub> with quadruple nitrogen coordination significantly reduced the energy barrier of crucial *COOH intermediate, facilitating efficient photocatalytic CO<sub>2</sub> reduction. This study meticulously modulated the coordination microenvironment surrounding dual-cobalt synergistic sites, providing new insight into the design of high-performance photocatalysts.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400780"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1D Covalent Organic Frameworks with Tunable Dual-Cobalt Synergistic Sites for Efficient CO<sub>2</sub> Photoreduction.\",\"authors\":\"Shu-Kun Xia, Yong Liu, Ruo-Meng Zhu, Jing-Dong Feng, Wang-Kang Han, Zhi-Guo Gu\",\"doi\":\"10.1002/marc.202400780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diatomic catalysts enhance photocatalytic CO<sub>2</sub> reduction through synergistic effects. However, precisely regulating the distance between two catalytic centers to achieve synergistic catalysis poses significant challenges. In this study, a series of one-dimensional (1D) covalent organic frameworks (COFs) are designed with adjustable micropores to facilitate efficient CO<sub>2</sub> photoreduction. CO<sub>2</sub> molecules are anchored between dual-cobalt centers within micropores, thus effectively reducing their activation energy and initiating the photocatalytic process. Additionally, the formation of *COOH intermediates is significantly influenced by the coordination microenvironment around dual-cobalt sites. Notably, COF-Co-N<sub>4</sub> exhibited remarkable CO<sub>2</sub> photoreduction activity with a CO evolution rate of 110.3 µmol·g<sup>-1</sup>·h<sup>-1</sup>, which surpasses most of previously reported single-atom-site photocatalysts. Comprehensive characterization and density functional theory (DFT) calculations revealed that 1D COFs with dual-cobalt sites possess the ability to anchor CO<sub>2</sub> molecules, thereby enhancing the efficacy of synergistic catalysis. Simultaneously, COF-Co-N<sub>4</sub> with quadruple nitrogen coordination significantly reduced the energy barrier of crucial *COOH intermediate, facilitating efficient photocatalytic CO<sub>2</sub> reduction. This study meticulously modulated the coordination microenvironment surrounding dual-cobalt synergistic sites, providing new insight into the design of high-performance photocatalysts.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2400780\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400780\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400780","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
1D Covalent Organic Frameworks with Tunable Dual-Cobalt Synergistic Sites for Efficient CO2 Photoreduction.
Diatomic catalysts enhance photocatalytic CO2 reduction through synergistic effects. However, precisely regulating the distance between two catalytic centers to achieve synergistic catalysis poses significant challenges. In this study, a series of one-dimensional (1D) covalent organic frameworks (COFs) are designed with adjustable micropores to facilitate efficient CO2 photoreduction. CO2 molecules are anchored between dual-cobalt centers within micropores, thus effectively reducing their activation energy and initiating the photocatalytic process. Additionally, the formation of *COOH intermediates is significantly influenced by the coordination microenvironment around dual-cobalt sites. Notably, COF-Co-N4 exhibited remarkable CO2 photoreduction activity with a CO evolution rate of 110.3 µmol·g-1·h-1, which surpasses most of previously reported single-atom-site photocatalysts. Comprehensive characterization and density functional theory (DFT) calculations revealed that 1D COFs with dual-cobalt sites possess the ability to anchor CO2 molecules, thereby enhancing the efficacy of synergistic catalysis. Simultaneously, COF-Co-N4 with quadruple nitrogen coordination significantly reduced the energy barrier of crucial *COOH intermediate, facilitating efficient photocatalytic CO2 reduction. This study meticulously modulated the coordination microenvironment surrounding dual-cobalt synergistic sites, providing new insight into the design of high-performance photocatalysts.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.